自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
摘要 - 手动跟踪教室出勤,这是一种备受推崇的传统方法,由于其对错误和效率低下的敏感性而提出了重大挑战。这些限制不仅消耗了宝贵的教师时间,而且损害了学术记录的准确性,从而影响了学生参与和表现的评估。回答这个问题,我们提出了一种使用基于机器学习的识别系统自动化课堂出勤的方法。这项研究旨在提高教育环境中出勤跟踪的准确性,效率和可靠性。我们研究的核心在于系统的设计和实施,阐明体系结构,数据流和集成到课堂环境中。我们的分析结果表明该系统可以跟踪出勤率的能力,同时提供有关其性能指标的准确信息。我们还深入研究了在课堂上实施此类技术的道德和实际考虑。通过使用基于机器学习的识别来自动化该过程,教育机构可以提高其运行效率,降低错误,并最终提供更有生产力的学习环境。我们的研究为教育研究和技术进步的未来途径打开了大门。关键字 - 自动出勤,出勤跟踪,面部识别,机器学习,课堂技术
Wojskowe Zakłady Uzbrojenia S.A. 获得了美国国防部 AIMS 认证,该认证表明升级后的 SA-6、KUB-1S91M2-P1 系统(证书编号 CL 0621405RC)以及升级后的 SA-8、OSA-P 系统(证书编号 CL 0621405RC)在平台级别上与 NATO MARK XII 识别系统具有互操作性,这些系统与 Wojskowe Zakłady Uzbrojenia S.A. 生产的 IFF 系统(SIC-11 / 12)集成,并配置了 KIV-16 Mod4。该证书证实 Wojskowe Zakłady Uzbrojenia S.A. 全面实施了用于作战行动的最新加密技术,目前该技术在北约后苏联导弹系统上使用。这样,该系统在北约防空系统的联合行动中就获得了完全的可靠性。目标识别“敌我”系统——Mark XII 模式 4、NSM、升级模式 5 和模式 S 是最新一代系统,集成了从可见光到热波段的被动光电传感器作为观察、检测、识别和识别空中目标的手段,以及北约标准 Mark XII 模式 4 中的主动 IFF 识别系统,配有主动加密计算机,并有可能扩展到北约标准 Mark XIIA 模式 5 和模式 S。
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
拥有精确有效的监测系统来评估河流状态的重要性在于其预测和应对可能导致洪水和溢出的极端天气事件的能力。与水有关的灾难,例如山洪洪水,可能会对基础设施,经济以及最重要的是对人口安全的影响。因此,高级河流识别系统的实施成为SIT(首字母或首字母缩写)的战略优先事项。本报告旨在概述通过图像在河流识别领域使用的最新技术,方法和方法。通过对专业文献的审查,将探索使用计算机视觉,遥感,人工智能以及其他相关学科的河流检测和跟踪学科的最新进展。此外,将解决在其他地区和组织中实施类似系统的成功案例和最佳实践。最终,本文将成为为其河流识别项目寻找最合适和最有效的解决方案的起点。此处收集的信息将为理解基于图像的河流监测系统的计划和执行中必须考虑的可能性,挑战和关键注意事项提供稳固的基础,以确保人口和自然环境的安全和福祉。这些要素来自各种信息和经验的来源。基于图像的河流识别系统的实施项目测量河床并确定溢流的风险是在必须全面考虑几个要素的情况下设定的。
●密苏里植物园是世界上最大的草药之一的所在地,是植物学最伟大的发展之一。●草药是世界上保存的植物标本的图书馆,提供了有关植物多样性,分布,地理和生态学的基本信息。●革命性物种识别(RSI)项目是一项变革性的计划,旨在将密苏里植物园广泛的植物标本室收藏数字化。该项目将利用最先进的人工智能(AI)技术来加速植物物种识别识别,这将为全球的恢复和保护工作提供依据。●AI技术将自动检测到独特的植物特征,该特征将用于创建植物特征的在线参考库。然后,科学家将能够将图像和其他数据从不明的工厂上传到一个新的项目网站,以快速自动化物种识别。●除了加速全球恢复和保护工作外,该项目还可以通过在植物分类学和制药室创建植物分类法和制造植物分类方面提供宝贵的培训计划来开发下一代植物专家。●这项具有里程碑意义的计划是由匿名$ 1440万美元的赠款(近年来植物学最大的赠款)在未来六年内将600万个植物标本在线上带来600万个植物标本的可能性,使全球科学家,保护主义者和政策制定者可以免费访问关键数据。
1 美国东北大学网络科学研究所和物理系,马萨诸塞州波士顿 02115;2 美国哈佛医学院布莱根妇女医院医学系钱宁网络医学分部,马萨诸塞州波士顿 02115;3 美国哈佛大学生物医学信息学系,马萨诸塞州波士顿 02115;4 美国哈佛大学哈佛数据科学计划,马萨诸塞州剑桥 02138。5 Scipher Medicine,221 Crescent St, Suite 103A,马萨诸塞州沃尔瑟姆 02453;6 美国东北大学物理系,马萨诸塞州波士顿 02115;7 萨班哲大学工程与自然科学学院,土耳其伊斯坦布尔 34956;8 美国马萨诸塞州波士顿大学 NEIDL 微生物学系;9 美国马萨诸塞州波士顿哈佛医学院布莱根妇女医院医学系10 匈牙利布达佩斯 1051,中欧大学网络与数据科学系。 * 这些作者的贡献相同