糖尿病足溃疡(DFUS)是糖尿病最常见且高度残疾的并发症之一,其特征是持续的脚步溃疡具有高感染率和截肢的风险,对患者生活质量和公共卫生系统构成了重大挑战(1)。根据数据预测,到2030年,全球糖尿病人口估计约为4.39亿(2)。在糖尿病患者中,大约30%的人会在其一生中出现足球溃疡(3),其中一部分患者因溃疡恶化而受到截肢的风险。研究表明,到2050年,三分之一的美国人将患有糖尿病,多达34%的糖尿病患者将在其一生中发展糖尿病足溃疡(DFU)(4)。DFU是成年糖尿病患者的严重并发症(5),一生中约有19%-34%的人足性溃疡,随着患者的年龄和医疗保健的复杂性,这种风险会增加(6)。DFU可以导致严重的结果,例如感染,截肢和死亡,在3 - 5年内复发率为65%(7),截肢率为20%,5年死亡率高达50%-70%(8)。尽管在多学科预防和早期筛查方面取得了进步,但在某些地区,截肢率却有所提高,尤其是影响年轻个人和少数群体,突出了DFU管理中的差异和不平等现象(9)。此外,糖尿病患者的免疫功能降低并降低了感染性(10),进一步增加了与DFU相关感染的风险(11)。在这些机制中,持续的炎症反应和组织受损(12)被认为是DFU的进展中的关键驱动因素。最近的研究表明,CXCR4基因在诸如细胞迁移,炎症调节和组织修复等过程中起重要作用(13),并且CXCR4的异常表达被认为是多种慢性条件下疾病进展的驱动力(14,15)。cxcr4在各种细胞类型(16)中表达,并通过其配体CXCL12调节细胞迁移,增殖和炎症反应(17)。研究表明,CXCR4在诸如DFU之类的慢性伤口中异常表达,可能导致
mung bean是一种重要的经济作物,被认为是一种植物蛋白成分含量较高的作物,被视为蔬菜和谷物。在各种与产量相关的性状中,一百种种子重量(HSW)对于确定绿豆的产生至关重要。这项研究采用了200条线的重组植物线(RIL)人群,这些线群是通过全基因组重新取代进行基因分型的,以在四个环境中鉴定出HSW相关的定量性状基因座(QTL)。我们识别了HSW的5个QTL,每个QTL都解释了2.46 - 26.15%的表型差异。其中,QHSW1在所有四个环境中均在1号染色体上映射,解释了表型变化的16.65-26.15%。精细的映射和基于地图的克隆程序,以及重组的后代测试,有助于将QHSW1的候选间隔缩小到506 kb。QHSW1基因组间隔和与QHSW1紧密联系的标记的这种识别对于改善种子重量较高的绿豆品种的繁殖工作可能是有价值的。
弱细胞块将损害总体包装水平的安全性和性能。在战的末尾的OCV低OCV表示断裂的粘结线或不平衡的细胞块(除其他外)。
自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
背景:使用文本报告向父母和对赔偿权提出异议的法律专业人士传达患有长期缺氧缺血性损伤 (HII) 的儿童的双侧、对称性和区域性皮质脑萎缩可能很困难。使用标准的横截面图像向外行人解释双侧、区域性脑成像也具有挑战性。大脑表面的单一平面图像,就像从地球仪中得出地球地图一样,可以通过磁共振成像 (MRI) 扫描的曲面重建生成,即墨卡托地图。外行人在未经事先培训的情况下识别异常“墨卡托脑图”的能力需要在非医疗环境中使用前进行评估。目的:确定外行人在未经事先培训的情况下检测异常儿童墨卡托平面脑图的灵敏度和特异性。方法和材料:向 111 名参与者分别提供 10 张墨卡托脑图。这些地图包括 5 个 HII、1 个皮质发育不良和 4 个正常病例。参与者需要识别异常扫描。计算了总体和参与者亚组的敏感性和特异性。结果:总体敏感性和特异性分别为 67% 和 80%。普通放射科医生(n = 12)的敏感性和特异性分别为 91.2% 和 94.6%。外行人(n = 54)的敏感性为 67%,特异性为 80%。结论:放射科医生的高特异性和敏感性验证了该技术在区分皮质病理异常扫描方面的有效性。外行人使用墨卡托地图识别异常大脑的高特异性表明,这是一种向外行人展示儿童 HII 皮质 MRI 异常的可行沟通工具。
• 203 Property Law (4 units) • 223 Administrative Law (4 units) • 251.5 Corporate Finance (4 units) • 255 Venture Capital Finance (2 units) • 256.9 Secured Transactions (3 units) • 270.4 A Just Transition to Clean Energy (1 unit) • 270.6 5 Energy Project Development & Finance (3 units) • 270.7(1) Renewable Energy Law & Policy (3 units) / Topics in Renewable Energy Law (1 unit) • 270.72 Pathways to Carbon Neutrality (2 units) • 261.6 Science and Regulatory Policy (3 units) • 271.71 International Environmental Law (2 units) • 273.1 Land Use Law (3 units) • 273.63 Public Lands & Natural Resources Law (3 units) • 275.3 Intellectual Property Law (4 units) • 275.65 Transnational知识产权法(3个单位)•275.8 IP和企业家精神(3个单位)•277专利法(3个单位)•ESPM 217气候变化的政治经济学(3个单位)**•EnveCon 147能源与环境的调节(4个单位)**•HAAS 212 ENSIGY和环境市场(3个单位)(3个单位)**•HAAS 212 ACROCKECH•HAAS 212 ACROCKECH•HAAS 212A(HAS)能源和基础设施项目融资(1单位)**•CIV ENG 107气候变化缓解(3个单位)**•CIV ENG 292A可持续社会技术(1单位)*•ERG C200 Energy&Society(4单位)** •美国的PubPol可再生能源政策(3个单位)**
有关此指南的内容关键数据保护概念生物识别识别我们如何证明我们遵守数据保护义务?我们如何合法处理生物特征数据?我们如何公平处理生物识别数据?准确性原理如何适用于生物识别数据?我们如何确保生物识别数据的处理是透明的?我们如何考虑对生物识别数据的权利请求?我们如何确保生物特征数据安全?
视觉场景是自然组织的,在层次结构中,粗糙的语义递归由几个细节组成。探索这种视觉层次结构对于认识视觉元素的复杂关系至关重要,从而导致了全面的场景理解。在本文中,我们提出了一个视觉层次结构映射器(HI-MAPPER),这是一种增强对预训练的深神经网络(DNNS)结构化理解的新方法。hi-mapper通过1)通过概率密度的封装来调查视觉场景的层次结构组织; 2)学习双曲线空间中的分层关系,并具有新颖的分层对比损失。预定义的层次树通过层次结构分解和编码过程递归地与预训练的DNN的视觉特征相互作用,从而有效地识别了视觉层次结构并增强了对整个场景的识别。广泛的实验表明,Hi-Mapper显着增强了DNN的表示能力,从而改善了各种任务的性能,包括图像分类和密集的预测任务。代码可在https://github.com/kwonjunn01/hi-mapper上找到。
场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。