+HUHZHSUHVHQWWZRVLJQ 4QGLQJVWKDWFRQWULEXWH XQGHUVWDQGLQJRI 白色念珠菌DOLIH-WKUHDWHQLQJ KXPDQIXQJDOSDWKRJHQ)LU HVWDEOLVKWKDWWKH 白色念珠菌UHIHUHQFHVWUDLQLVGHIHF 51$LQWHUIHUHQFHDIXQGDP UHJXODWRU\SDWKZD\6HFRQ GLVFRYHUWKDWLQFRQWUD UHIHUHQFHVWUDLQWKHYD PDMRULW\RIC。白色念珠菌LVRODWH FRQWDLQDQDFWLYH51$ LQWHUIHUHQFH51$ LSDWKZ VLOHQFHVJHQHH[SUHVVLRQ &RQVLGHULQJWKDW51$ LSOD FHQWUDOUROHVLQUHYHUVL JRYHUQLQJJHQHH[SUHVVLRQ JHQRPHVWDELOLW\GUXJUH DQGFRXQWHULQJYLUDOLQIH RXU4QGLQJRHUVYDOXDEOH LQVLJKWVLQWRWKHELRORJ GDQJHURXVIXQJDOSDWKRJHQ
战争5,阿巴多·伊玛德·埃尔·塔维尔3,奥斯瓦尔多·马拉菲亚3作者隶属关系:1帕拉纳帕拉纳司法天主教大学,巴西库里蒂巴; 2个积极大学,库里蒂巴,巴西,巴西; 3巴西SP的Mackenzie Presbyterian Institute,SAO Paulo; 4巴拉那联邦帕拉纳大学,巴西PR; 5医院塞索·拉莫斯(Celso Ramos),弗洛里亚诺波利斯(Florianópolis),南卡罗来纳州,巴西。orcid ana ana julia ribas sigwalt-https://orcid.org/0009-0005-4732-5093 gabriella micheten dias-https://orcid.rcid/0000-0001-11-7036-036-048036-0480líviadala dala dala dala dala dala dala dala dala dala pocay-- https://orcid.org/0009-0007-1526-1851 mahara freitas dos santos-https://orcid.org/0009-0002-1345-7790 tailla cristina de oliveira de oliveira de oliveira-https:// -sigwalt https://orcid.org/0000-0002-9899-5493 Fernando Issamu taboboshi-https://orcid.org/00000000-0002-3150-2164 Leonaldo Wanderloff Franco-https https://orcid.org/0009-0005-3371-3423 Abdo Imad El Tawil-https://orcid.org/0009-0000-6218-7446 Osvaldo Malafaia-https://orcid.org/0000-0002-1829-7071 Correspondence Marcos Fabiano Sigwalt Email: marcosigwalt@yahoo.com.br利益冲突:无融资:无图像
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
通讯作者:shahabbayatzadeh@gmail.com https://doi.org/10.22105/mrpe.2025.499771.1137 被许可人。绩效评估的现代研究。本文为开放获取文章,根据知识共享署名 (CC BY) 许可条款和条件分发(http://creativecommons.org/licenses/by/4.0)。
《欧洲AI法案》(2024/1689)自2024年8月1日起就一直有效,并规范了欧盟(EU)的人工智能(AI)的使用。AI法案具有基于风险的方法。因此,从2025年2月2日起,禁止某些带来不可接受风险的AI系统。由《 AI法案》的主管来解释如何以监督目的解释禁令。为了在荷兰为此做准备,Autoriteit Persoonsgevens(AP)询问感兴趣的各方(公民,政府,企业和其他组织)及其代表寻求需求,信息和见解。我们可以使用所有输入来考虑对禁止的AI系统的进一步澄清。2024年9月27日,AP发布了第一个关于AI法案前两项禁令的意见。在第二次呼吁输入中,我们解决了第六次禁止:在工作场所或教育机构领域的情感识别系统(禁令F)。稍后,我们将要求对其他禁令进行输入。本文档在通过一组问题要求(附加)输入时概述了这些禁止的AI系统的特定标准。可以提交捐款,直到2024年12月17日。AP根据其作为算法和AI的协调主管的角色来呼吁输入。为了完成这项新任务,在AP内建立了算法监督协调部(DCA)。荷兰政府目前正在为《 AI法案》的国家监督当局进行正式指定。此呼吁的投入还与为支持《 AI法案》禁止的AI系统的未来监督进行的准备工作保持一致。
科学监测是科学建议的基本基础。除其他外,监测旨在有助于理解人为使用的影响(例如fineries),股票的健康,个人和保护和保护措施的有效性(例如,mpas)。监测对底栖鱼类和底栖鱼类社区的监测通常是基于诸如底部拖网(Tostal Trawing)之类的侵入性方法,但是在某些情况下,侵入性方法可能较少。需要越来越多的海洋保护区和风力,在这种情况下,由于保守或技术和安全原因无法部署诸如拖网等传统方法,因此支持了越来越多的侵入性监测方法。为了支持新的监测概念的发展,我们进行了文献综述,以确定已经可用的方法的限制和机会。此外,我们提出了一个目的指南,可以帮助确定用于个人目的的适当方法。我们定义了使用四个不同标准分析的八种不同方法,并列出了它们的优势和缺点。我们将本指南进一步应用于波罗的海海洋保护区的监测,这表明除了传统的底部拖网,替代性和侵入性较低的方法外,还可以针对特定的研究目的。因此,我们鼓励科学家和经理考虑替代数据收集方法,以最大程度地减少科学抽样的环境影响。但是,我们的结果还表明,大多数方法仍然需要进一步的修改,尤其是在采样设计,方法的标准化以及与既定的调查方法的可比性方面。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
时空卷积通常无法学习视频中的运动动态,因此需要一种有效的运动表示来理解自然界中的视频。在本文中,我们提出了一种基于时空自相似性(STSS)的丰富而鲁棒的运动表示。给定一系列帧,STSS 将每个局部区域表示为与空间和时间中邻居的相似性。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间中的结构模式。我们利用整个 STSS,让我们的模型学习从中提取有效的运动表示。我们所提出的神经块称为 SELFY,可以轻松插入神经架构中并进行端到端训练,无需额外监督。通过在空间和时间上具有足够的邻域体积,它可以有效捕捉视频中的长期交互和快速运动,从而实现鲁棒的动作识别。我们的实验分析表明,该方法优于以前的运动建模方法,并且与直接卷积的时空特征互补。在标准动作识别基准 Something-Something-V1 & V2、Diving-48 和 FineGym 上,该方法取得了最佳效果。
多发性硬化症(MS)是中枢神经系统(CNS)的一种慢性炎症性疾病,被认为是遗传学与生活方式和环境因素的相互作用引起的复杂疾病。这项研究旨在确定通过使用机器学习模型有助于MS发展的遗传和环境风险因素之间的相互作用。这包括用于MS预测和随机森林,Rosetta和Logistic回归模型的逻辑回归模型,用于查找SNP与风险因素之间的相互作用。研究人群由1118个个体,5,615个,有MS和5,566个健康对照组成,并提供有关环境和生活方式暴露的遗传信息和问卷数据。遗传信息包括基因型数据,而问卷数据包括性别,20岁时BMI,吸烟习惯,暴露于阳光,单核细胞增多症状态和年龄。这项研究确定了可能与MS发展有关的潜在基因环境相互作用。这些相互作用的含义将需要在未来的研究中得到进一步验证。使用基于网络的方法确定了MS疾病模块,可用于进一步分析以鉴定涉及MS的中心基因。这项研究的结果可能会更好地了解疾病发育和发病机理,并有助于采取个性化干预措施,以最大程度地减少疾病发展的风险。
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
