摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
通讯作者:shahabbayatzadeh@gmail.com https://doi.org/10.22105/mrpe.2025.499771.1137 被许可人。绩效评估的现代研究。本文为开放获取文章,根据知识共享署名 (CC BY) 许可条款和条件分发(http://creativecommons.org/licenses/by/4.0)。
请以以下方式引用本文:Girish and Sheltzer,(2020)。一种用于识别癌症遗传依赖性的 CRISPR 竞争检测方法,Bio-protocol 10 (14): e3682。DOI:10.21769/BioProtoc.3682。
理解和表达情绪是孩子认知和社会发展的关键部分。但是,有情感困难的孩子可能在认识和传达自己的感受时面临挑战。本文介绍了基于AI的情感识别系统来解决此问题。系统使用计算机视觉和深度学习技术通过面部表情来检测情绪,并提供个性化的,特定于情感的建议来指导儿童的情感理解。儿童的情绪智力与改善的社交互动和学习成绩有关。传统的情感检测方法取决于心理评估或手动观察,这可能是耗时且主观的。我们的系统利用AI自动化和增强情绪检测准确性,提供既客观又可扩展的实时反馈。
iSDA已收到成员的反馈,表明某些市场参与者甚至NCA都形成了理解,即作为该授权行为的授权是在修订后的MIFIR第27条中,这意味着该法案中规定的标识参考数据必须报告为RTS 23。ISDA没有共享这种解释,并指出咨询和委派行为本身都很清楚,重点是透明度。的确,该法案指出,其主要目的“是遵守MIFIR第27(5)条(第5)条第一个子部分的授权,该授权是指定针对OTC衍生物用于OTC衍生物的识别参考数据,以实现第8A(2)第8A(2)条和MIFIR的第8A(2)和第21条和21章的透视要求。”该授权法不会根据RTS 23.UPI和其他识别参考数据应直接包含在第10和21条所要求的透明度报告中。
庞迪切里大学,印度帕德切里摘要:随着暴力犯罪者(包括儿童性犯罪者)的累犯率令人震惊,对维护脆弱环境的高级安全措施的需求越来越紧迫。学校,育儿中心和其他高风险地区特别容易受到潜在威胁的影响,因此必须实施积极的解决方案,以确保儿童和员工的安全和福祉。在很大程度上依赖安全人员手动监控的传统监视系统正越来越多地证明实时识别和应对威胁的不足。人类的监督通常受到诸如延迟反应和判断错误之类的局限性,留下了关键的安全差距。我们建议的工作提供了一种新颖的视频监视系统,该系统使用DeepFaceNet,这是一种高度优化和模块化的深度学习模型,旨在克服这些困难。由于该技术主要旨在处理监视摄像机的实时视频供稿,因此它可以识别和检测具有犯罪背景的人的面孔,尤其是那些被归类为高风险罪犯的人。通过利用最新的面部识别技术,我们建议的系统提供了强大而全面的威胁检测解决方案。随着公共安全的改善,它还可以抑制犯罪行为,这有助于避免这种事件。该系统通过强调高精度,实时处理和可靠性来解决并确保安全和监视领域的更安全环境。索引术语:面部识别,深度学习,深度,监视,安全性。
本研究提出了计算机视觉技术的新应用,用于识别ALS拥挤的加速器隧道中的磁铁和磁铁组件。利用SAM2/YOLO跟踪,我们培训了一个系统,结合了CAD渲染和来自Advanced Light Source升级(ALSU)项目的组件的真实照片。我们的方法涉及创建一些手动标记的图像的综合数据集,这些图像源自CAD模型和现场手动标记的照片。我们在简化维护程序,增强安全协议并改善了复杂加速器环境中自动化视觉检查和库存管理方面的总体操作中显示了潜在的应用。
对高度多样化的植物分类单元的保护和研究可能是一个巨大的挑战,因为具有潜在复杂关系的不可管理的物种通常会导致物种鉴定困难。cyrtandra举例说明了这些挑战。CA缺乏身份资源。170种伯恩斯·西拉德拉(Bornean Cyrtandra)的物种使许多标本未识别,从而减慢了该地区的研究工作。本项目通过使用在线生物多样性数据管理平台XPER3(https://app.xper.fr/)来描述为高度多样化的分类单元创建识别资源的工作流程来解决这一问题。该密钥现已发布并可以在线自由访问。在线多功能分类键通过将可访问的用户友好平台与动态分类研究工具相结合,为生物多样性研究提供了有希望的工具,使其特别适合于解决高度多样化的分类学组。
