了解神经网络在看不见的数据上如何概括对于设计更多的易萧条和可靠的模型至关重要。在本文中,我们使用拓扑数据分析的方法研究了神经网络的概括差距。为此,我们计算训练阶段后神经元激活相关性构建的加权图的同源持久图,旨在捕获与网络的通用能力相关的模式。我们比较了持久图的不同数值摘要的有用性,并表明其中一些可以准确预测并部分解释生成间隙而无需测试集。对两项计算机视觉识别任务(CIFAR10和SVHN)的评估显示,与最新方法相比,竞争性的泛化差距预测。
卷积神经网络(CNN)受到灵长类动物视觉系统的组织的启发,进而成为视觉皮层的有效模型,从而可以准确预测神经刺激反应。虽然对与大脑相关的对象识别任务进行培训可能是预测大脑活动的重要前提,但CNN的大脑样结构可能已经允许准确预测神经活动。在这里,我们在预测视觉皮层的神经反应方面评估了任务精制和脑部优化的卷积神经网络(CNN)的性能,并进行了系统的架构操作以及受过训练的和未经训练的特征提取器之间的比较,以揭示关键的结构组件影响模型性能。对于人类和猴子区域V1,采用RELU激活函数的随机重量CNN与平均或最大池的结合,显着超过了其他激活函数。随机体重CNN在预测V1响应时与训练有素的对应物相匹配。可以预测V1响应的程度与神经网络的复杂性密切相关,这反映了神经激活功能和汇总操作的非线性。但是,对于与物体识别(例如IT)相关的较高视觉区域,编码性能与复杂性之间的这种相关性显着弱。测试视觉区域之间的这种差异是否反映了功能差异,我们在纹理歧视和对象识别任务上训练了神经网络模型。与我们的假设一致,模型的复杂性与纹理歧视的性能更加密切,而不是对象识别。我们的发现表明,具有足够模型复杂性的随机重量CNN允许将V1活动视为训练有素的CNN,而较高的视觉区域则需要通过梯度下降通过训练获得的精确重量配置。
了解神经网络在看不见的数据上如何概括对于设计更健壮和可靠的模型至关重要。在本文中,我们使用拓扑数据分析的方法研究了神经网络的概括差距。为此,我们计算训练阶段后神经元激活相关性构建的加权图的同源持久图,旨在捕获与网络的通用能力相关的模式。我们比较了持久图的不同数值摘要的有用性,并表明其中一些可以准确预测并部分解释概括差距而无需测试集。对两项计算机视觉识别任务(CIFAR10和SVHN)的评估显示,与最新方法相比,竞争性的泛化差距预测。
卷积神经网络(CNN)受到灵长类动物视觉系统的组织的启发,进而成为视觉皮层的有效模型,从而可以准确预测神经刺激反应。虽然对与大脑相关的对象识别任务进行培训可能是预测大脑活动的重要前提,但CNN的大脑样结构可能已经允许准确预测神经活动。在这里,我们在预测视觉皮层的神经反应方面评估了任务精制和脑部优化的卷积神经网络(CNN)的性能,并进行了系统的架构操作以及受过训练的和未经训练的特征提取器之间的比较,以揭示关键的结构组件影响模型性能。对于人类和猴子区域V1,采用RELU激活函数的随机重量CNN与平均或最大池的结合,显着超过了其他激活函数。随机体重CNN在预测V1响应时与训练有素的对应物相匹配。可以预测V1响应的程度与神经网络的复杂性密切相关,这反映了神经激活功能和汇总操作的非线性。但是,对于与物体识别(例如IT)相关的较高视觉区域,编码性能与复杂性之间的这种相关性显着弱。测试视觉区域之间的这种差异是否反映了功能差异,我们在纹理歧视和对象识别任务上训练了神经网络模型。与我们的假设一致,模型的复杂性与纹理歧视的性能更加密切,而不是对象识别。我们的发现表明,具有足够模型复杂性的随机重量CNN允许将V1活动视为训练有素的CNN,而较高的视觉区域则需要通过梯度下降通过训练获得的精确重量配置。
在日益数字化的世界中,数据的数量和异质性呈指数级增长。数据捕获互联网浏览活动、汇款、能源消耗、健康诊断、媒体创作和消费等。AI 指的是一组机器学习工具,它们能够处理大量数据、提取潜在模式并预测未来事件和行为。2012 年,当基于深度学习的算法在图像识别任务中达到类似人类的能力时,这些工具的能力取得了重大进步。从那时起,AI 以惊人的速度在各个研究学科中传播,解决了语音识别等多个问题,然后从学术研究发展到数十亿人使用的消费者服务。
我们通过将对话情绪识别任务与完整的量子测量范围进行类比,为对话情绪识别提供了一个新颖的视角。我们描述了对话中说话者情绪识别过程中的不同量子测量步骤,并将它们与类量子神经网络结合起来。类量子层由复值运算实现,以确保量子概念的真实采用,这自然实现了对话上下文建模和多模态融合。我们借用现有算法来学习复值网络权重,以便以数据驱动的方式进行类量子过程。我们的模型与两个基准数据集上的最新方法相当,并提供了理解对话情绪识别的量子视角。
■通过统计和结构规律的复杂组合将对象分为类别。我们试图更好地理解隐式学习导致对象类别的结构特征的神经反应。成年参与者暴露于32个对象类别,其中包含三种结构属性:在隐式学习任务中,频率,可变性和共发生。在此暴露后,参与者完成了一项识别任务,然后在fMRI会议期间出示了学习对象类别的块。分析是通过从整个梭形回旋和外侧枕皮层的ROI中提取数据来进行的,并比较整个ROI的不同结构证券的影响。行为上,我们发现该符号
在日益数字化的世界里,数据的数量和异构性呈指数级增长。数据包括互联网浏览活动、资金转账、能源消耗、健康诊断、媒体创作和消费等。人工智能是指一组机器学习工具,能够处理如此大量的数据,提取潜在的模式,并预测未来的事件和行为。2012 年,深度学习算法在图像识别任务中达到了与人类相似的能力,这些工具的能力向前迈出了重要一步。从那时起,人工智能以惊人的速度在各个研究领域传播,解决了语音识别等多个问题,并从学术研究发展成为数十亿人使用的消费者服务。
摘要。静息状态功能磁共振成像 (rsfMRI) 产生的功能连接组可作为个人的认知指纹。连接指纹已被证明在许多机器学习任务中很有用,例如预测特定于受试者的行为特征或任务引起的活动。在这项工作中,我们提出了一种基于表面的卷积神经网络 (BrainSurfCNN) 模型,用于根据其静息状态指纹预测单个任务对比。我们引入了重建对比损失,以加强模型输出的受试者特异性,同时最大限度地减少预测误差。所提出的方法显著提高了预测对比在完善的基线上的准确性。此外,BrainSurfCNN 的预测也超过了受试者识别任务中的重测基准。5