摘要 —描述图像的视觉语义内容是提高场景图像识别能力的一种有效而直接的方法。语义多项式 (SMN) 表示就是这样一种表示,它使用概念的后验概率来捕获语义信息。获取 SMN 表示的核心部分是构建概念模型。为了构建概念模型,必须为图像中存在的每个概念提供基本事实 (真实) 概念标签。由于数据集中的图像数量众多,因此手动标记概念实际上不可行。在这项工作中,我们提出了一种在没有真实概念标签的情况下选择伪概念的方法。我们建议使用弱监督伪概念建模来生成一种基于深度 CNN 的新型 SMN 表示。在这种方法中,来自更深的卷积层的激活图(过滤器响应)被视为伪概念的线索。我们建议使用伪概念类数据的子空间分析来对相似的伪概念进行分组。在 MIT67 和 SUN397 等标准数据集上的场景识别任务中研究了所提出方法的有效性。
目前,深度学习模型在现实世界的面部识别任务中达到了人类水平。我们回顾了使用基于深度学习的计算方法理解人脸处理的科学进展。这篇综述围绕三个基本进展展开。首先,经过面部识别训练的深度网络会生成一个表示,该表示保留了有关面部(例如身份、人口统计、外观、社交特征、表情)和输入图像(例如视点、照明)的结构化信息。这迫使我们重新思考视觉逆光学问题的可能解决方案。其次,深度学习模型表明,面部的高级视觉表示无法从可解释的特征方面来理解。这对理解高级视觉皮层中的神经调节和群体编码具有重要意义。第三,深度网络中的学习是一个多步骤的过程,迫使人们从理论上考虑各种可以重叠、随时间积累和相互作用的学习类别。需要多种学习类型来模拟人类面部处理技能的发展、跨种族效应以及对个人面孔的熟悉程度。
这项研究通过最小的认知结构探索了通过语法诱导人类语言获取的认知机制,其简短且灵活的序列记忆是其最中心的特征。我们使用强化学习来识别人工语言中的单词流的句子。的结果证明了该模型可以识别频繁且内容丰富的多字块,重现自然语言获取的特征的能力。该模型成功地导航了不同程度的语言复合体,从而通过重复使用顺序模式来揭示有效的适应性,从而使挑战相结合。帕尔西姆树结构的出现提出了针对识别任务,平衡经济和信息的优化。认知建筑反映了人类记忆系统和决策过程的各个方面,从而增强了其认知能力。该模型在概括和语义表示方面表现出局限性,但其极简主义的性质为语言学习的某些基本机制提供了见解。我们的研究证明了这种简单的体系结构的力量,并强调了序列记忆在语言学习中的重要性。由于其他动物似乎没有忠实的序列记忆,这可能是理解为什么只有人类开发复杂语言的关键。
摘要 本文提出了一种基于高效受脑启发的超维计算 (HDC) 范式的硬件优化情绪识别方法。情绪识别为人机交互提供了宝贵的信息;然而,情绪识别涉及的大量输入通道 (> 200) 和模态 (> 3) 从内存角度来看非常昂贵。为了解决这个问题,提出了减少和优化内存的方法,包括一种利用编码过程的组合性质的新方法和一个基本的细胞自动机。与所提出的技术一起实施了具有早期传感器融合的 HDC,在多模态 AMIGOS 和 DEAP 数据集上实现了两类多模态分类准确率,效价 > 76%,唤醒 > 73%,几乎总是比最先进的技术更好。所需的矢量存储无缝减少了 98%,矢量请求的频率减少了至少 1/5。结果证明了高效超维计算在低功耗、多通道情绪识别任务中的潜力。关键词:脑启发、超维计算、情绪识别、可穿戴、内存优化、硬件高效、多模态传感器融合
摘要——本研究的目的是通过使 EEG 置信度解码器最佳地适应群体组成来最大化群体决策表现。我们训练线性支持向量机从人类参与者的 EEG 活动中估计他们的决策信心。然后,我们使用加权多数规则组合个人决策来模拟不同规模和成员的群体。分配给组中每个参与者的权重是通过解决小维度、混合、整数线性规划问题来选择的,其中我们最大化训练集上的群体表现。因此,我们引入了优化的协作式脑机接口 (BCI),其中每个团队成员的决策都根据个人神经活动和群体组成进行加权。我们在 10 名人类参与者执行的人脸识别任务上验证了这种方法。结果表明,最佳协作式 BCI 比其他 BCI 显著提高了团队绩效,同时提高了群体内的公平性。这项研究为协作式 BCI 在以稳定团队为特征的现实场景中的实际应用铺平了道路,在这些场景中,优化单个群体的决策政策可能会带来团队动态的长期显著效益。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
开发委员会和用于测试运动图像命令的六型机器人机器人。测试系统以检测闭合和打开左右手的想象运动以控制机器人的运动。与运动任务相关的脑电图(EEG)信号在人体感觉运动皮层上感测。接下来,Sockit处理数据以识别允许受控机器人运动的命令。使用F3,F4,FC5和FC6传感器的MI-EEG信号的分类是使用卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合体系结构进行的。此方法利用深度学习识别模型来开发实时嵌入的BCI系统,其中信号处理必须是无缝且精确的。在创建和公共科学数据集中使用K折的交叉验证评估所提出的方法。我们的数据集由从四个测试受试者获得的2400次试验组成,持续了三秒钟的关闭和开放式运动的想象。使用我们的数据和最先进的数据集,识别任务分别达到84.69%和79.2%的精度。数值结果支持Motor图像可以成功地应用于BCI系统中,以控制移动机器人和相关应用,例如智能车辆。
摘要 — 描述图像的视觉语义内容是提高场景图像识别效果的有效而直接的方法。语义多项式 (SMN) 表示就是这样一种表示,它使用概念的后验概率来捕获语义信息。获取 SMN 表示的核心部分是构建概念模型。为了构建概念模型,必须为图像中存在的每个概念提供基本事实 (真实) 概念标签。由于数据集中的图像数量众多,因此手动标记概念实际上不可行。在这项工作中,我们提出了一种在没有真实概念标签的情况下选择伪概念的方法。我们建议使用弱监督伪概念建模生成一种基于深度 CNN 的新型 SMN 表示。在这种方法中,来自更深的卷积层的激活图(过滤响应)被视为伪概念的线索。我们建议使用伪概念类数据的子空间分析来对相似的伪概念进行分组。在 MIT67 和 SUN397 等标准数据集上研究了所提出方法在场景识别任务中的有效性。
摘要 - 实施具有新兴记忆(例如电阻随机访问记忆(RRAM))的系统设计的系统是减少人工智能能源消耗的重要铅。为了在此类系统中实现最大的能量效率,应尽可能紧密地集成逻辑和内存。在这项工作中,我们关注三元神经网络的情况,其中突触权重假设三元值。我们提出了一种使用预感的两种晶体管/两抗记忆体系结构,其中可以在单个感觉操作中提取重量值。基于对具有这种感觉放大器的杂交130 nm CMOS/RRAM芯片的实验测量,我们表明该技术在低供应电压下特别适合,并且对于处理,电压和温度变化具有弹性。我们表征了方案中的位错误率。我们基于CIFAR-10图像识别任务的神经网络模拟显示,三元神经网络的使用显着提高了神经网络的性能,而对于二进制二进制,这通常是推理硬件而言是优先的。我们最终证明了神经网络对我们方案中观察到的位误差的类型免疫,因此可以在没有误差校正的情况下使用。