摘要。脑机接口 (BCI) 融入智能轮椅 (SW) 技术领域,标志着在增强残疾人士的行动能力和自主能力方面取得了显著的飞跃。BCI 是一种使大脑和外部设备之间能够直接通信的技术。虽然 BCI 系统为增强人机交互和为残疾人士提供移动解决方案提供了绝佳的机会,但它们也引发了有关安全性、安全性和隐私的重大担忧,而这些问题尚未得到大规模研究人员的彻底解决。我们的研究旨在通过利用 BCI 的脑电图 (EEG) 信号来增强残疾人士对轮椅的控制。我们引入了一种非侵入式 BCI 系统,该系统利用神经信号采集耳机来捕获 EEG 信号。这些信号是从个人经过训练产生的特定大脑活动中获得的,从而可以精确控制轮椅。基于 EEG 的 BCI 有助于捕捉大脑的电活动并将这些信号转化为可操作的命令。我们研究的主要目标是展示该系统解释脑电图信号和解码用户发出的特定思维模式或心理命令的能力。通过这样做,它旨在将这些转换成轮椅的精确控制命令。这一过程包括识别导航意图,例如前进、后退或转弯,这些意图是专门为轮椅操作量身定制的。通过这种创新方法,我们旨在在用户的认知意图和轮椅运动之间创建一个无缝的界面,增强身体残疾人士的自主性和机动性。
在工业用例中,重型移动机器通常用于农业和移动地球。自动化这些机器可能是一项复杂的任务,鉴于用例,自动化水平和环境,可以引入许多不同的建筑问题。在设计自主单元时,可以遵循许多导航和控制范例,例如反应性,审议,基于行为和混合动力。本文探讨了在托盘拾取的用例中实现混合控制体系结构。目的是识别导航系统的不同组件,并以分层体系结构的形式将其分为混合导航系统,该架构可以采用决策层进行广义任务部署。决策可以与许多工具一起使用,例如Petri-Nets和有限的州机器。最近几年从游戏行业部署了一种称为行为树的事物,试图通过利用最小的过渡规则和树结构中的节点之间的状态来提高开发系统组件的可重复性。论文的目的是使用ROS2作为中间件解决方案部署系统,以通过ROS2平台应用程序分发馈回馈电和命令。的目的还是在ROS2中不同解决方案的大生态系统中识别算法软件包和框架,这可以使部署自动企业重型移动机系统更快,更容易。机器控制器暴露了行为树节点可以利用的接口来实现动作的基础。与分层体系结构设计,ROS2和行为树结合使用,可以识别机器的原语和动作,并将它们绑定到机器的功能上,以便在行为树中使用简单的行为使用更复杂的任务部署(例如托盘拾取),并具有分层的体系结构。最后,在论文中,对实现系统体系结构中的成功托盘进行关键组件的性能进行了评估。由于该应用程序主要取决于路径以下的性能,定位,状态估计和操纵器轨迹跟踪,因此它们正在评估中。最后,鉴于Tar-Get Machine中的分布式控制系统中的体系结构和系统部署,在托盘采摘系统中进行了成功的尝试。但是,鉴于系统中的速率主题较高,RCLPY实现表现出CPU性能的性能瓶颈和差可扩展性。