全球气候变化构成了全球土地使用的挑战,我们需要重新考虑农业实践。通常认为生物多样性可以用作健康农业生态系统的生物标志物,但我们必须指定哪些特定构成健康的微生物组。因此,了解Holobionts如何在天然,苛刻和野生栖息地中起作用,以及根瘤菌如何介导该系统中的植物和生态系统生物多样性,使我们能够识别植物拟合度的关键因素。通过连接宿主表型自适应特征来进行工程微生物群落的系统方法将有助于我们了解遗传多样性支持的Holobionts的增加。识别控制有益微生物组合相互作用的遗传基因座将允许将基因组设计整合到作物育种计划中。传统上,对植物有益的细菌受益于“促进和调节植物生长”。农业生态系统的未来观点应是通过多个级联反应定义工厂表型,并为农业生态系统提供遗传变异性。
摘要 - 本文概述了使用语音、手势和人机界面 (HCI) 控制的机器人遥控系统。该系统由三个基本软件组件组成,包括 (a) 从多个输入获取和识别控制命令、(b) 客户端-服务器网络通信和 (c) 机器人及其手臂的命令融合和执行。控制命令识别的输入来自 (1) 有线或无线麦克风、(2) 安装在人臂上的有线方向传感器和 (3) HCI 设备,例如鼠标、键盘或带有控制命令序列的文本文件。手势命令集基于美国海军用于在地面导航飞机的词典。多个命令的融合通过 (a) 分析时间延迟和 (b) 为命令和发出这些命令的客户端分配不同的优先级来执行。在机器人执行选定命令之前,会考虑一致和冲突的命令。对于紧急控制,视频信号会发送到监控站。
B 细胞急性淋巴细胞白血病 (B-ALL) 是骨髓 (BM) 分化 B 细胞的恶性对应物,最常发生在儿童中。虽然新的化疗药物组合极大地改善了年轻患者的预后,但复发后或成年患者的疾病预后仍然很差。这可能是由于 B-ALL 对治疗的反应不均一,这不仅依赖于白血病细胞的内在特性,还依赖于肿瘤细胞微环境传递的外在保护性线索。或者,白血病细胞有能力根据自己的需要塑造微环境。关于保护性微环境作用的大部分知识来自识别控制造血干细胞自我更新或 B 细胞分化的间充质细胞和内皮细胞。在这篇综述中,我们讨论了有关 B-ALL 保护性微环境的当前知识以及针对白血病细胞与其微环境之间串扰的疗法的开发。
术语 D 定义 DDCMO 在 DDPO 指导下,国防后勤信息服务部门下属的一个组织,根据公法 105-261 第 1051 节的规定,为支持提高 DEMIL 代码准确性的计划而成立。 国防物品 在 CFR 第 22 篇第 120.6 小节中定义。 DEMIL 从国防部和美国海岸警卫队个人财产中消除功能能力和固有军事设计特征的行为,DEMIL 需要认证和验证。DEMIL 的方法和程度包括从关键特征移除和破坏到通过切割、粉碎、撕碎、熔化、焚烧等彻底破坏。DEMIL 必须防止财产被用于其最初的预期用途,并防止泄露可能用于对付美国的固有设计信息。DEMIL 适用于可使用和不可用状态的国防部和美国海岸警卫队个人财产。 DEMIL 代码 分配给国防部和美国海岸警卫队个人财产的代码。它表明了所需物理销毁的程度,识别需要专门能力或程序的物品,并识别不需要 DEMIL 但可能需要 TSC 的物品。它在整个生命周期系统管理过程中使用,以在国防部和美国海岸警卫队个人财产脱离国防部或美国海岸警卫队控制之前识别控制要求。DEMIL 生命周期规划中心
■词汇表1)基因组选择(GS):一种基于有关DNA差异的信息来预测和选择个人遗传能力的方法。关于DNA和果实特征差异的数据,使用大量品种和菌株作为训练数据对两者之间的关系进行建模,并且基于“基因组预测(GP)模型”预测个体的遗传能力。可以预测未来在发芽阶段可以实现的水果的特征。注2)全基因组关联研究(GWAS):一种使用数学公式来建模DNA与果实特征的差异与大量品种和菌株中的果实特征之间的关系,并在统计学上检测到果实特征和相关DNA的差异。一旦揭示了与果实性状相关的DNA差异,可以通过寻找DNA差异的附近来识别控制果实性状的候选基因。注意3)下一代序列:可以一次解码大量DNA序列的设备。注4)单核苷酸多态性(SNP):DNA是一种称为脱氧核糖核酸的物质,由四种类型的碱基组成:腺嘌呤(a),胸腺胺(T),鸟嘌呤(G)和细胞儿童(C)。品种之间的碱基差异称为单核苷酸多态性。注5)Infinium系统:Illumina Co.,Ltd.提供的单个核苷酸多态性检测系统。注6)GRAS-DI(由随机扩增子测序 - 主测序引导的基因分型)系统:一种由丰田汽车公司开发的单核苷酸多态性检测系统。 ■研究项目这项研究是在以下项目的支持下进行的:
摘要 高通量技术的快速发展使得人们能够识别越来越多的疾病相关基因(DAG),这对于了解疾病的起始和开发精准治疗至关重要。然而,DAG 通常包含大量冗余或假阳性信息,导致难以量化和优先考虑这些 DAG 与人类疾病之间的潜在关系。在本研究中,提出了一种面向网络的基因熵方法(NOGEA),通过定量计算主基因在有向疾病特异性基因网络上的扰动能力来准确推断导致特定疾病的主基因。此外,我们证实了 NOGEA 识别的主基因对于预测疾病特异性的起始事件和进展风险具有很高的可靠性。主基因还可用于提取不同疾病的底层信息,从而揭示疾病共病的机制。更重要的是,已批准的治疗靶点在相互作用组网络中拓扑定位在主基因的小邻域中,这为预测药物-疾病关联提供了一种新方法。通过此方法,11 种旧药被重新鉴定并预测对治疗胰腺癌有效,然后通过体外实验进行验证。总的来说,NOGEA 有助于识别控制疾病起始和共现的主基因,从而为药物疗效筛选和重新定位提供了有价值的策略。NOGEA 代码可在 https://github.com/guozihuaa/NOGEA 上公开获取。
海报会议 海报编号 1 Jala Ahmed,西奈山伊坎医学院 树突状细胞通过嵌合突触加速辐照肿瘤中的 CAR T 细胞 海报编号 2 Adam Bailey,威斯康星大学麦迪逊分校 非闭塞性肠系膜缺血诱发严重黄热病中毒期 海报编号 3 Mariko Bennett,费城儿童医院 什么控制着小胶质细胞的病毒限制? 海报编号 4 Hsiao-Tuan Chao,贝勒医学院 由 PPFIA3 罕见变异引起的综合征性神经发育障碍 海报编号 5 Emily Ferenczi,麻省总医院;哈佛医学院 苍白球对动机行为的调节 海报编号 6 Sarah Hill,丹娜法伯癌症研究所 BRCA1 作为 ORFIUS 复合体的一部分,在复制起点调节中发挥作用 海报编号 7 Chi-Min Ho,哥伦比亚大学 原位 CryoET 揭示疟原虫的翻译动力学 海报编号 8 Steven Jonas,加州大学洛杉矶分校 用于纠正气道干细胞中引起囊性纤维化的突变的货物无关脂质纳米粒子 海报编号 9 Maia Kinnebrew,斯坦福大学 识别控制细胞表面胆固醇稳态的新基因 海报编号 10 Sergey Ovchinnikov,麻省理工学院 蛋白质语言模型学习相互作用序列基序的进化统计数据 海报编号 11 Margaux Pinney,加州大学旧金山分校 数十亿年进化过程中酶催化的适应性
标题:通过蛋白质传输耦合作者靶向蛋白质迁移:Christine S. C. Ng,1 Aofei Liu,1 Bianxiao Cui,1 Steven M. Banik 1,2 * 1化学系,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国。2 Sarafan Chem-H,斯坦福大学,加利福尼亚州斯坦福大学94305,美国。 *通讯作者。 电子邮件:sbanik@stanford.edu摘要亚细胞蛋白定位调节蛋白质功能,并且可以在癌症1和神经退行性疾病中损坏2-4。 已经注释了许多蛋白质的定位5-7,并且在药理学上相关的方法来精确重新定位以解决疾病驱动表型,这将是一种有吸引力的目标治疗方法。 分子利用班车蛋白的运输来控制靶蛋白的亚细胞定位,可以为靶向蛋白质重新定位提供相互作用的培养基疗法的途径。 为了实现这一概念,我们采用了一种定量方法来识别控制劫持蛋白质运输能力,开发梭子蛋白和配体的收集能力的特征,并证明了具有内源性定位信号的蛋白质的重新定位。 使用自定义成像分析管道,我们表明,可以通过将靶蛋白与含有足够强的本地本地定位序列的靶蛋白进行分子偶联来克服内源性定位信号。 小分子介导的FUS R495X从细胞质中固定在细胞核中,在细胞应激模型中减少了细胞应激颗粒的数量。 简介2 Sarafan Chem-H,斯坦福大学,加利福尼亚州斯坦福大学94305,美国。*通讯作者。电子邮件:sbanik@stanford.edu摘要亚细胞蛋白定位调节蛋白质功能,并且可以在癌症1和神经退行性疾病中损坏2-4。已经注释了许多蛋白质的定位5-7,并且在药理学上相关的方法来精确重新定位以解决疾病驱动表型,这将是一种有吸引力的目标治疗方法。分子利用班车蛋白的运输来控制靶蛋白的亚细胞定位,可以为靶向蛋白质重新定位提供相互作用的培养基疗法的途径。为了实现这一概念,我们采用了一种定量方法来识别控制劫持蛋白质运输能力,开发梭子蛋白和配体的收集能力的特征,并证明了具有内源性定位信号的蛋白质的重新定位。使用自定义成像分析管道,我们表明,可以通过将靶蛋白与含有足够强的本地本地定位序列的靶蛋白进行分子偶联来克服内源性定位信号。小分子介导的FUS R495X从细胞质中固定在细胞核中,在细胞应激模型中减少了细胞应激颗粒的数量。简介我们将核激素受体作为可行的班车发展,可以用靶向固定化激活分子(TRAM)来利用,以重新分布驱动疾病的突变蛋白,例如SMARCB1 Q318X,TDP43 D NLS和FUS R495X。使用CAS9介导的敲入标签,我们证明了低丰度(FOXO3A)和高丰度(FKBP12)内源性蛋白质的核富集通过分子偶联到核激素受体运输。最后,在原代神经元中,小分子介导的NMNAT1从核向轴突重新分布能够减慢轴突变性,并在药理学上模仿WLDS从小鼠到某些类型的NeuroDegeneration 8。因此,靶向蛋白质重新定位的概念可以通过相互作用重新布线来治疗疾病的方法。
原肌球蛋白相关受体激酶 B (TrkB) 是脑源性神经营养因子 (BDNF) 的受体;其信号传导通过激活几个下游级联,有助于神经元存活、可塑性、分化和生长。缺乏细胞内激酶结构域的截短异构体 (TrkB.T1) 的过度表达与慢性疼痛的发展和持续有关。已发表的数据显示,小鼠模型中的 TrkB.T1 敲除可恢复运动功能并减轻脊髓损伤后的疼痛。我们项目的目标是确定抑制 TrkB.T1 表达的小分子作为慢性疼痛的潜在疗法,重点关注两种调节机制:(1) TrkB 前 mRNA 的差异转录后加工,以及 (2) 通过其 mRNA 的 3' 非翻译区 (3'UTR) 对 TrkB.T1 表达的转录后调节。对于第一点,我们假设两种主要 TrkB 亚型的比例主要受上游 (T1) pA 位点的切割和多聚腺苷酸化 (pA) 位点识别控制,因此抑制该位点 3'-加工的药物应能抑制 TrkB.T1 合成。对于第二点,我们假设 TrkB.T1 mRNA 3'UTR 包含调节序列,这些序列的功能可通过操纵关键反式因子的功能、表达或 RNA 结合活性的化合物进行调节,从而通过加速 TrkB.T1 mRNA 的衰变和/或抑制其翻译来抑制 TrkB.T1 的产生。对于每种机制,我们开发了独立的活细胞高通量筛选 (HTS) 检测方法,以识别可以 (1) 阻断 TrkB.T1 pA 位点的 3'-切割和多聚腺苷酸化,或 (2) 通过 TrkB.T1 mRNA 3'UTR 抑制基因表达的小分子。利用这些发现,我们旨在发现一种或多种能够抑制 TrKB.T1 表达的新药物,这些药物可在慢性疼痛的小鼠模型中作为新型镇痛药进行测试。