Thermo Scientific™TMTPRO试剂使研究人员能够在单个LC-MS/MS实验中同时识别和量化许多样品中的蛋白质和肽。当前的TMTPRO同质质量标签结合了13 C&15 N稳定的同位素,以通过高分辨率MS/MS分析并行对多达18个样品进行定量分析。为了进一步提高多路复用能力,我们开发了17种同位素的同型同位同位素集,该集合在记者组上包含一个2 h同位素,以产生不同的记者离子质量,与3 MDA的现有集合不同。与传统的试剂集合结合使用,氘化试剂可以对Thermo Scientific™Orbitrap平台上多达35个样品进行多重定量分析。在这里,我们表征了新型的TMTPRO变体,并评估了它们的32个PLEX定量的性能。
1.1.收购临床诊断试剂 7,自动化全套设备,定量 HIV I 病毒 RNA,实时 RT-PCR,测试,兼容试剂盒中的制备和分析( );临床诊断试剂 7、HIV 快速病毒载量试剂盒 – 完整的 HIV CVR 自动化、定量 HBV 病毒 DNA、测试、实时 RT-PCR,兼容试剂盒中的制备和分析( );快速病毒载量 HBV 试剂 - 用于临床诊断的 CVR HBV 7,自动化全套设备,定量 HCV 病毒 RNA,测试,实时 RT-PCR,兼容试剂盒中的制备和分析(病毒载量
成本节约 - 每次检测成本减少 2 - 4 美元 成本节约 1900 万美元;到 2023 年将增加约 190 万美元的检测 VL 和 EID 没有资金缺口 通过减少分销成本,为政府额外节省约 320 万美元
准备工作:FRN缓冲液:将42毫升异丙型物添加到新的瓶子RPE缓冲液中:将44 ml EtoH添加到新瓶AW1缓冲液中:向新瓶AW2缓冲液添加25 ml EtoH:添加30 ml EtoH DNase I股票:550 µL无RNase rnase for lyophifiend dnase dnase i,Aliquot and ealiquot and aT -20个月
作为IND向后期过渡,赞助商面临着制造更大批次以满足3期临床试验需求的挑战。试图满足这种增加的需求时,通常会出现几种类型的制造变化:(1)扩展; (2)扩展; (3)试剂修饰。为了增加药品量的大小,制造商可能会在其当前站点内启动扩大的制造工艺,或者他们可能会考虑一个新的制造地点或单元来扩展。对于试剂的修改,赞助商可能会因许多原因而引发试剂变化,例如升级试剂的质量或由于所需的试剂量增加而导致试剂制造商的变化。
摘要:由于其复杂性,CRISPR/Cas 系统已成为广泛使用的酵母基因组编辑方法。然而,CRISPR 方法通常依赖于预组装的 DNA 和额外的克隆步骤来传递 gRNA、Cas 蛋白和供体 DNA。这些繁琐的步骤可能会阻碍其实用性。在这里,我们提出了一种替代方法,即组装和 CRISPR 靶向体内编辑 (ACtivE),该方法仅依赖于线性 DNA 片段的体内组装来构建质粒和供体 DNA。因此,根据用户的需要,可以从存储库中轻松选择和组合这些部分,作为快速基因组编辑的工具包,无需任何昂贵的试剂。该工具包包含经过验证的线性 DNA 片段,易于在室温下存储、共享和运输,大大降低了昂贵的运输成本和组装时间。优化该技术后,还对酵母基因组中靠近自主复制序列 (ARS) 的八个基因座进行了整合和基因表达效率表征,以及这些区域的破坏对细胞适应性的影响。通过构建 β-胡萝卜素途径展示了 ACtivE 的灵活性和多路复用能力。在短短几天内,在酿酒酵母 BY4741 上从头开始实现了单基因整合效率 >80% 和三重整合效率 >50%,无需使用体外 DNA 组装方法、限制性酶或额外的克隆步骤。本研究提出了一种可轻松用于加速酵母基因组工程的标准化方法,并为酵母合成生物学和代谢工程目的提供了明确的基因组位置替代方案。关键词:酿酒酵母、CRISPR 工具包、基因组编辑、合成生物学、标准化、基因座表征■简介
简介 seqWell 的 Tagify™ i5 UMI 适配器负载转座酶试剂旨在催化通过 Tn5 转座酶用寡核苷酸有效载荷片段化和标记 DNA 的反应。具体而言,这些试剂可提供由全长、与 Illumina 兼容的 P5/i5/UMI/R1 引发序列组成的寡核苷酸,这些序列还包含 10 个碱基的条形码和 10 个碱基的唯一分子标识符 (UMI) 区域。这些试剂可作为靶向测序检测的一部分加入,例如 UDiTaS 1 或 RGen-Seq 2 应用、CRISPR QC 以及细胞和基因工程 QC。该产品以 24 种或 96 种不同的条形码 UMI 试剂形式提供。本用户指南介绍了试剂的一般用途,并非旨在作为特定文库制备方法的完整协议。建议个人用户查看其应用程序 3 并根据需要进行修改。
电荷转移解离质谱法 (CTD-MS) 已被证明可在气相中诱导生物离子的高能碎裂,并提供类似于极紫外光解离 (XUVPD) 的碎裂光谱。迄今为止,CTD 通常使用动能介于 4-10 keV 之间的氦阳离子来引发自由基导向的分析物碎裂。然而,作为一种试剂,氦气最近已被列为一种越来越稀缺和昂贵的关键矿物,因此本研究探索了使用更便宜、更易获得的试剂气体的潜力。使用各种 CTD 试剂气体(包括氦气、氢气、氧气、氮气、氩气和实验室空气)对聚合度为 4 的模型肽缓激肽和模型寡糖 k-角叉菜胶进行碎裂。CTD 结果还与低能碰撞诱导解离 (LE-CID) 进行了对比,后者在同一个 3D 离子阱上收集。使用恒定的试剂离子通量和动能,所有五种替代试剂气体都产生了与 He-CTD 相比非常一致的序列覆盖率和碎裂效率,这表明试剂气体的电离能对生物离子的活化影响可以忽略不计。所有气体的 CTD 效率范围为缓激肽的 11-13% 和 k -角叉菜胶的 7-8%。在这些狭窄的范围内,缓激肽的 CTnoD 峰的丰度和缓激肽的 CTD 碎裂效率都与 CTD 试剂气体的电离能相关,这表明共振电荷转移在该肽的活化中起的作用很小。缓激肽和 k-角叉菜胶的大部分激发能来自电子停止机制,该机制由试剂阳离子与生物离子最高占据分子轨道 (HOMO) 中的电子之间的长程相互作用描述。CTD 光谱没有提供任何证据表明生物离子与氢气、氧气和氮气等反应性更强的气体之间存在共价结合产物,这意味着试剂离子的高动能使它们无法进行共价反应。这项工作表明,任何测试的替代试剂气体都是未来 CTD-MS 实验的可行选择。© 2021 Elsevier BV 保留所有权利。
•精确的反应控制以最大程度地减少废物和试剂的用法:该公司旨在最大程度地减少废物产生和过度使用试剂。拉曼光谱学提供对反应进度的准确和直接见解的能力,使他们能够更好地控制反应,从而减少废物和试剂消耗。