查尔姆斯理工大学摘要:尽管激光粉末床熔合 (LB-PBF) 作为一种增材制造技术具有突出地位,但获准用于该工艺的合金数量仍然有限。在传统制造中,铁合金是最常见的合金组,主要由普通碳钢和低合金钢组成。然而,在 LB-PBF 中,铁合金的生产仅限于少数奥氏体/沉淀硬化不锈钢和工具钢。普通碳钢和低合金钢的缺乏源于碳在加工过程中的负面影响,这会促进成品材料内开裂缺陷的形成。因此,为了扩大 LB-PBF 的机会,必须了解如何加工这些含碳铁合金。本研究探讨了各种普通碳钢(0.06 至 1.1 wt.% C)和低合金钢(4130、4140、4340 和 8620)的 LB-PBF 加工性能和微观结构。微观结构分析发现,成品试样由回火马氏体组成,这种回火马氏体是由于 LB-PBF 过程中的初始快速冷却和随后的固有热处理而形成的。此外,在 C 含量≥0.75 wt.% 的合金中观察到残余奥氏体的存在,这是由于马氏体转变温度降低,导致冷却至室温时部分奥氏体未转变。就缺陷而言,成品试样内的孔隙率可能与所选的体积能量密度 (VED) 和合金的碳含量有关。在低 VED 下,试样含有与未熔合孔隙有关的大而不规则的孔隙,而在高 VED 下,试样含有与小孔隙有关的圆形中等大小的孔隙。就碳含量而言,发现增加碳量可减少低 VED 下的未熔合孔隙的数量,而增加高 VED 下的小孔隙的数量。未熔合孔隙的减少是由于熔池的润湿性和流动性改善,而小孔隙的增加是由于碳含量较高导致熔池深度增加。除了孔隙之外,在一些普通碳钢和低合金钢中还观察到冷裂纹,形成于硬度超过某些阈值的试样中:Fe-C 合金为 ≥425 HV,4140 合金为 >460 HV,4340 合金为 >500 HV。增加 VED 或激光功率会降低样品硬度,因为这两个因素都会增强 LB-PBF 的固有热处理。这意味着如果使用足够大的 VED 或激光功率,就可以避免(某些合金中的)开裂。碳含量还会影响成品样品的硬度,从而影响开裂敏感性,这一发现解释了为什么低碳合金(<0.43 wt.% C)在任何测试的 VED 下都不会出现开裂,而高碳合金(≥0.75 wt.% C)会在任何测试的 VED 下出现开裂。% C) 在每次测试的 VED 中都出现开裂。利用这些发现,建立了加工窗口,无需预热构建板即可生产出高密度 (>99.8%)、无缺陷的普通碳钢和低合金钢样品。
1 Oragene•DX产品手册。 pd-hb-00001 2非侵入性的,辅助收集的高量和质量基因组DNA从幼儿的唾液中。 DNA Genotek。 PD-WP-018 3 Oracollect•RNA产品手册。 DNA Genotek。 pd-hb-00021 4总DNA和RNA产生250μl等分试样的综合剂•根据Oragene•DX人为因素研究的结果,用Qiagen rneasy powermicrobiome kit 5提取的唾液DNA和RNA [K141410和K192920]。1 Oragene•DX产品手册。pd-hb-00001 2非侵入性的,辅助收集的高量和质量基因组DNA从幼儿的唾液中。DNA Genotek。PD-WP-018 3 Oracollect•RNA产品手册。DNA Genotek。pd-hb-00021 4总DNA和RNA产生250μl等分试样的综合剂•根据Oragene•DX人为因素研究的结果,用Qiagen rneasy powermicrobiome kit 5提取的唾液DNA和RNA [K141410和K192920]。
材料挤压增材制造 (MEAM) 作为一种现代制造工艺,目前正在吸引各个行业的关注,因为它可以以比其他增材制造工艺更低的成本生产出复杂零件。在本研究中,比较了增材制造和锻造的 17-4PH 不锈钢零件在原始状态和在 H900 条件下热处理的微观结构和力学性能。原始试样由马氏体和 δ-铁素体组成。固溶处理后,δ-铁素体相在马氏体基体中表现出明显的生长。时效处理引起的沉淀强化表现为拉伸强度和硬度的增加。此外,从实验中获得的强度系数 (K) 和应变硬化指数 (n) 被用作拉伸试验模拟的输入数据。所有试样的模拟结果与实验结果一致。模拟结果的发现有望用于预测通过 MEAM 工艺制造的复杂零件的力学行为。关键词:增材制造,材料挤压增材制造,17-4PH不锈钢,热处理,沉淀强化,有限元方法1.引言
2.1 特定应用附件 05 - 68 2.2 数字控制器附件 69 - 74 2.3 环境箱 75 - 78 2.4 引伸计 79 - 114 2.5 熔炉 115 - 126 2.6 通用压缩附件 127 - 134 2.7 通用疲劳夹具 135 - 144 2.8 通用弯曲固定装置 145 - 154 2.9 通用静态拉伸夹具 155 - 188 2.10 钳口面和试样夹持器 189 - 216 2.11 称重传感器 217 - 228 2.12 负载框架附件 229 - 266 2. 2 . 13 计算机硬件和配件 267 - 268 2 . 14 材料测试软件 269 - 276 2 . 15 试样测量和制备工具 277 - 280 2 . 16 扭转和轴向/扭转夹具 281 - 286 2 . 17 冲击系统配件 287 - 320 2 . 18 SATEC™ 摆锤冲击系统配件 321 - 326
样品(包括替代物)在进行任何额外处理步骤之前添加到样品等分试样中。替代物标准的回收率用于监测异常基质效应、严重样品处理错误等。”(EPA 3500C - 4 修订版 3 有机萃取和样品制备,2007 年 2 月)
摘要。首先研究的是电缆管道生产中使用的聚碳酸酯 (PC) 基材料的使用、加工和材料特性。测试试样取自现场电缆管道,包括工业中常用的其他添加剂。进行了不同的机械和光学分析方法。观察到聚碳酸酯/丙烯腈丁二烯苯乙烯 (PC/ABS) 与矿物增强 PC 的拉伸性能存在显著差异。矿物增强 PC 的硬度显著取决于电缆管道的几何形状。PC/ABS 断裂表面的断裂行为和形态与夏比冲击试验期间的试样温度直接相关。工艺温度会影响高速冲压等高冲击加工过程中的失效行为。由于矿物增强 PC 的冲击强度较低,与 PC/ABS 相比,薄膜和毛刺形成的可能性较小。然而,矿物分布并不均匀,因此有待进一步研究。本研究旨在更好地了解 PC/ABS 产品的工艺性能、参数选择、质量改进以及对底层微观结构和表面性能的一般了解。
海洋能源结构通常由先进的复合材料制成,在使用过程中会受到极端海洋环境的影响。在极端海洋环境中,海水流和波浪反复加载结构,从而导致两种环境条件:水侵入和机械疲劳。在之前的研究中,这两种环境条件是按顺序应用的,其中复合材料样品经过老化,然后进行机械测试。为了了解动态载荷和水侵入对复合材料的综合影响,本研究涉及在水箱中对复合材料试样进行静态和疲劳四点弯曲测试。水箱的设计和制造适合 100 kN 或 250 kN 负载框架。水下疲劳测试的弯曲强度值、失效循环和失效模式结果将用于指导海洋能源结构设计。试样规模测试方法将用于扩大规模并为后续子组件测试和标准制定提供参考。根据知情标准设计海洋能源结构的好处是降低终生成本并提高可靠性和能源产量,最终实现可持续的低碳能源系统。
4。离心1分钟@≥8000x g。这是“洗手#1”。5。将列转移到新的1.5 ml管,标有相同名称和“洗手#2”。6。将50 µL缓冲液直接添加到柱膜上,然后在新管中离心1分钟 @≥8000x g。这是洗脱#2。7。将样品(洗脱#1和洗脱#2存储在4°C下。如果几个月不使用DNA,请为冰箱制作等分试样并保留
16. 摘要 战略公路研究计划 (SHRP) 是一个耗资 1.5 亿美元的 5 年研究计划,针对四个领域:沥青、混凝土、公路运营和路面工程。这项工作产生了 128 种产品,每种产品都可能是设备、程序、规范等。这些产品中的许多产品和 SHRP 研究的其他方面都适用于机场路面,但这些技术必须单独评估才能确定其实用性。这些评论已被组织成情况说明书,提供产品的简要描述和对该技术是否适用于联邦航空管理局 (FAA) 路面及其使用中涉及的技术问题的评估。已根据当前的 FAA 沥青混合料设计对 SHRP 沥青混合料设计系统 (SUPERPAVE ® ) 进行了评估。 SHRP 期间进行的沥青混合料测试(恒定高度重复简单剪切、弯曲梁疲劳和热应力约束试样测试)表明,重型 SHRP 和重型 FAA 实验室制备的试样在性能相关材料特性方面没有显著差异。其中包括关于 FAA 采用和/或修订 SHRP 沥青技术方面的建议。
摘要 在各种增材制造 (AM) 技术中,线材和电弧增材制造 (WAAM) 是最适合生产大型金属部件的技术之一,同时也表明其在建筑领域具有应用潜力。目前已有多项研究致力于钢和钛合金的 WAAM,最近,人们也在探索 WAAM 在铝合金中的应用。本文介绍了使用商用 ER 5183 铝焊丝生产的 WAAM 板的微观结构和机械特性。目的是评估平面元件在拉伸应力下可能出现的各向异性行为,考虑相对于沉积层的三个不同提取方向:纵向 (L)、横向 (T) 和对角线 (D)。进行了成分、形态、微观结构和断口分析,以将 WAAM 引起的特定微观结构特征与拉伸性能联系起来。发现试样取向具有各向异性行为,T 试样的强度和延展性最低。造成这一现象的原因在于,微观结构不连续性在拉伸方向上存在不利的方向。拉伸试验结果还表明,与传统的 AA5083-O 板材相比,其整体机械性能良好,表明未来可用于实现非常复杂的几何形状和优化形状,以实现轻量化结构应用。
