未来的火箭将是可重复使用的。只有一小部分火箭会被回收,大部分将重新进入地球大气层并着陆,就像一次任务一样。可重复使用的火箭将降低成本和能源,并减少由于大量发射而产生的太空垃圾问题。完全可重复使用的火箭仍有待开发,但部分可重复使用的发射系统 ISRO 还开发了一种可重复使用的火箭,称为 RLV-TD(可重复使用的发射 V),该火箭已于 2016 年成功试飞。
然而,我们即将在着陆系统中树立新的标准。NORMARC 8100 地面增强系统基于 Indra 数十年的 GPS 系统经验。自 2005 年以来,挪威多个地形复杂、天气条件恶劣的机场都使用我们的 SCAT-I 系统。NORMARC GAST-D GBAS 站安装在法兰克福、奥斯陆加勒穆恩和特内里费等机场。主要国际枢纽已开始进行试飞,大多数新飞机都安装了 GBAS 接收器。
121.51 目的 ................................................................................ 15 121.53 飞机适航性 .............................................................................. 16 121.55 通用语言 .............................................................................. 16 121.57 飞机试飞 .............................................................................. 16 121.59 飞行准备 .............................................................................. 17 121.61 运行飞行计划 ............................................................................. 18 121.63 搜索和救援信息 ............................................................................. 18 121.65 应急和救生设备信息 ............................................................. 19 121.67 迫降认证 ............................................................................. 19 121.69 VFR 飞行的最低高度 ............................................................. 19 121.71 机场的使用 ............................................................................. 19 121.73 夜间作业 ............................................................................. 22 121.75 燃料 ............................................................................. 22 121.77 飞行检查系统 ...................................................................... 24 121.79 应急灯操作 ...................................................................... 25 121.81 旅客安全 ...................................................................... 25 121.83 旅客信息 ......................................................................
本文件由位于阿拉巴马州亨茨维尔的 NASA 马歇尔太空飞行中心的 SLS 项目办公室准备,该办公室负责 SLS 的设计、开发、测试和工程。SLS 是一种新型超重型火箭,将作为 Artemis 任务的一部分将宇航员送上月球。SLS 和猎户座载人飞船 Artemis I 的首次飞行将从佛罗里达州的 NASA 肯尼迪航天中心升空,并将无人驾驶的猎户座飞船送入月球轨道。Artemis I 是一次严格的试飞,旨在从 Artemis II 任务开始的载人飞行之前彻底测试 SLS 火箭的所有系统。
本文件由位于阿拉巴马州亨茨维尔的 NASA 马歇尔太空飞行中心的 SLS 项目办公室准备,该办公室负责 SLS 的设计、开发、测试和工程,SLS 是一种新型超重型火箭,将作为 Artemis 任务的一部分将宇航员送上月球。SLS 和猎户座载人飞船 Artemis I 的首次飞行将从佛罗里达州的 NASA 肯尼迪航天中心升空,并将无人驾驶的猎户座飞船送入月球轨道。Artemis I 是一次严格的试飞,旨在从 Artemis II 任务开始的载人飞行之前彻底测试 SLS 火箭的所有系统。
这要归功于风洞测试。这样就可以准备计算机的第一个版本。下一步是将这些计算机安装在集成了最新空气动力学模型的模拟器上。可以开始评估,首先由专门从事这项工作的“开发模拟器”飞行员进行,然后由被提名遵循该计划的试飞员进行。一开始,会发现许多小问题,并且计算机会逐步发展。真正的证明来自试飞本身,因为即使模型通常是可靠的,但它们很少能完全代表飞机在低速、高速和地面效应下的表现。此外,在飞行测试开始时,飞行员第一次接触到飞机响应其指令的加速度。结构的灵活性可能会产生后果
本单元计划让莫里蒂高中航空和机器人课程的学生共同设计、建造、编码和测试无人机,以满足新墨西哥州莫里蒂社区的现实需求。学生将确定当地需求、制定技术规格表、使用 3D 打印技术设计无人机、使用 Arduino 编程飞行控制系统并进行试飞。本单元还将重点介绍如何将航空学生定期复习的空气动力学原理应用于无人机的设计和飞行测试。本单元的最后将为中学生进行无人机演示,并计划对无人机进行长期教育使用。
由于风洞测试,计算机的第一个版本已经准备就绪。下一步是将这些计算机安装在集成了最新空气动力学模型的模拟器上。评估可以开始,首先由专门从事这项工作的“开发模拟器”飞行员进行,然后由被提名按照程序进行的测试飞行员进行。一开始,会发现许多小问题,然后计算机会逐步改进。真正的证明来自试飞本身,因为即使模型通常是可靠的,它们也很少能完全代表飞机在低速、高速和地面效应下的状态。此外,在飞行测试开始时,飞行员第一次接触到飞机响应其指令的加速度。结构的灵活性可能会产生后果