该公司在这里建立了欧洲首个液体燃料火箭发动机试验台,2021 年,第一台 KeroLOX 火箭发动机(以煤油和液氧为燃料)在此获得飞行资格。它还拥有一块多功能平板,用于测试运载火箭结构;一个垂直推进级试验台,MIURA 1 在此获得飞行资格;一个完全掩体的控制中心,所有活动都在此进行管理和监督;以及一系列基础设施,如水泵区、配电室、不间断电源系统区、消防区和机库,用作存储和维护点。
5 月 11 日当周,斯坦尼斯航天中心的五名员工被评为 NASA 载人探索和操作任务理事会 HE r O,以表彰他们为使该机构更接近 2024 年重返月球所做的工作。NASA 理事会正在倒计时 2024 年底,为每一天都命名一位 HE r O。5 月 11 日,斯坦尼斯 B-2 试验台太空发射系统 (SLS) 核心级绿色运行测试的项目经理巴里·罗宾逊 (Barry Robinson)(从左到右)被评为第 1695 天 HE r O。公告表彰罗宾逊和他的团队完成了 B-2 试验台的所有设计、采购和建造,为绿色运行测试做准备,并在此过程中增强了其他五个支持设施的能力。5 月 12 日,B-2 试验台主任瑞安·罗伯茨 (Ryan Roberts) 被评为第 1964 天 HE r O。罗伯茨因其精力充沛、奉献精神和毅力而被表彰为
本文介绍了三体旋转系统的研究和设计,该系统将用作研究不同重力变量(包括模拟月球和火星重力条件)下系统功能和人体生理学的前兆/试验台。试验台将是收集人造重力对航天器系统和人体生理学影响数据的必要步骤,有助于优化月球和火星表面栖息地以及人造重力航天器的设计方案。这将是低地球轨道可变重力研究平台开发的第一阶段,用于长期研究可变重力梯度和旋转引起的重力模拟的影响。确保宇航员在长期火星任务期间的安全以及他们返回后的恢复是任务成功的关键要求。因此,在执行任务之前必须充分了解部分重力对生理和心理能力的长期影响,并且需要一个研究平台来研究部分重力对人类和技术系统的影响。在低地球轨道 (LEO) 绕地球运行的可变重力研究平台可以解决这一知识空白。低地球轨道是此类设施的理想地点,因为低地球轨道距离地球表面很近,而且可以利用那里现有的基础设施和商业活动。此类平台的开发需要分阶段进行。本文介绍了第一阶段。它是研究平台的试验台,由两艘定制的龙飞船组成,龙飞船停靠在中央枢纽,然后停靠在国际空间站的 Zvezda 舱。该提案旨在利用现成的元素来降低开发成本和时间,使我们能够使用当今的技术在“明天”进行测试。为了执行操作,试验台将脱离对接,撤退到国际空间站后方 2000 米处,并通过启动增强推进器开始旋转。然后,载人龙飞船将系绳到所需的旋转半径以开始测试操作。完成后,试验台将停止旋转,收回系绳并重新对接国际空间站。该序列将根据需要重复。本文还介绍了测试平台的测试目标、优势、劣势、机遇和威胁的分析、测试平台组成部分的设计开发和选择标准、操作概念和与测试平台相关的可能风险及其各自的缓解措施。
摘要 — 许多游戏都充当了人工智能 (AI) 研究的试验台,以衡量其进展。麻将是一款极具挑战性的多智能体不完美信息游戏,玩家人数众多。然而,将麻将作为 AI 试验台的一个挑战是缺乏一个快速、易于使用且为人类玩家实现流行规则的公开框架。我们提出并描述了一个开源麻将框架 Mjx,它实现了最流行的麻将规则之一,即立直麻将 (日本麻将)。我们将 Mjx 的执行速度与现有的流行开源软件进行了比较,并证明它的性能提高了 100 倍。Mjx 可在 https://github.com/mjx-project/mjx 上获得。索引术语 — 麻将、强化学习、人工智能、多智能体、不完美信息博弈。
开放式创新模式确实包括新知识供应方的研究基础设施,以及可以作为创新设备的有效试验台,这些设备可以与成熟的研究技术进行对标。粒子、X 射线、中子探测器及其相关的超快、低噪声电子设备首先开发,然后通过 RI 的采用进行验证,用于高级研究,从而在医疗、环境、信息、生产监控等所有应用领域产生非常直接的创新。从发光设备到精密时钟的参考信号源再次由 RI 开发和验证。在生物医学领域,RI 提供样本、图像和协议,不断丰富开放式创新蓬勃发展的知识基础。在宽带数据通信和高功率/高吞吐量计算以及环境观察和建模或社会研究中,RI 再次为创新提供了最先进的试验台。
研究目标包括试验台设施管理、培训协调、文件收集和控制、采购协调和其他项目协调相关职责。考虑到所探索的主题,本论文可以被认为是广泛的多学科的,并且对未来的工作任务具有教育意义。
图 1.通用航空飞机燃油消耗历史值和预测值。日历年包括 2000 – 2020 年 ……………………………………...……………... 2 图 2。航空相关乙醇事件的时间表 ………………………………… 5 图 3。J.P. Instruments EDM-800 手册中的“最佳动力”(蓝色)和“最佳经济”(红色)混合设置 …………………………………………… 11 图 4。试验台飞机 (N152BU) …………………………………………………… 16 图 5。试验台动力装置,(a) 右舷显示气缸 1 和 3 (b) 左舷显示气缸 2 和 4 …………………………………………... 17 图 6。从推荐的倾斜度(25°F 富峰)下载的原始数据2007 年 3 月 4 日进行的 E40 航班(EGT)…………………………………… 19 图 7。TSTC 韦科机场 (KCNW) 的机场图………………………….. 23 图 8。从 TSTC 机场 (CNW) 北出发(灰线)和南出发(粉红线)的航线规则 ………………………………………………... 24 图 9。EGT #3 安装位置,(a) 块内区域表示试验台发电厂 #2 排气管的位置和 (b) #2 排气管上 EGT 探头的特写 ……………………………………………………………………...... 26 图 10。燃油校准程序正在进行中,(a) 校准的燃油集油罐和 (b) 球阀延伸到燃油管路,可在校准过程中调节燃油流量……………………………………………………………… 28 图 11。全油门时随着乙醇含量增加,转速增加趋势 ...................................................................................................................................... 33 图 12。“推荐混合”空燃比下的典型巡航性能参数 …………………………………………………………………………….40 图 13。全油门时随着乙醇含量增加,转速增加趋势…... 44 图 14。“峰值 EGT”空燃比下的典型巡航性能参数 ……………………………………………………………………….. 50
工程师使用 CompactRIO 作为低温流体的控制系统,提供本地、坚固的控制系统。NI 的冗余架构为这些要求苛刻的应用提供了保证。对实时处理器和板载 FPGA 的低级访问意味着工程师可以设计一个可以信赖的分布式控制系统。工程师还使用 CompactRIO 来控制火箭试验台设备。无论是控制喷水系统、发动机支架执行器还是安全锁定系统,CompactRIO 都能在苛刻的环境条件下提供可靠性。CompactRIO 还用于测试期间的火箭发动机控制。实时控制、FPGA 定时和多种信号支持使 CompactRIO 成为在测试之间调整发动机参数的理想灵活控制平台。为了记录发动机测试测量数据,工程师求助于 PXI 或 CompactDAQ,将实验室级仪器带到火箭试验台的恶劣环境中。这些系统安装在测试设施周围的接线盒中,或路由到中央数据中心。
本期内容 16 // 结构测试 澳大利亚研究人员为何以及如何开发全尺寸试验台来对军用直升机进行疲劳测试 24 // 研究飞机 德国航空航天研究机构 DLR 详细介绍了其最新的飞行试验台将如何帮助欧洲研究人员 32 // 替代引擎 工程师们正在测试下一代航天器的离子推进系统 40 // 封面故事:超音速 QueSST 详细了解 NASA 和初创公司的工程师如何测试降低音爆噪音的方法 48 // 环境测试 英国沃里克的 Element 实验室敞开大门,展示了一套振动器和热室 58 // 测试讲座:挪威国防公司测试中心经理 Nammo Tron Aasmundstad 讨论武器测试 64 // 生产计量 最新的数字技术和传感器的进步使航空航天部件的生产更加精确 72 // 高速成像 超高速撞击研究对摄像机和图像处理设备提出了巨大的要求
本期内容 16 // 结构测试 澳大利亚研究人员为何以及如何开发全尺寸试验台来对军用直升机进行疲劳测试 24 // 研究飞机 德国航空航天研究机构 DLR 详细介绍了其最新的飞行试验台将如何帮助欧洲研究人员 32 // 替代引擎 工程师们正在测试下一代航天器的离子推进系统 40 // 封面故事:超音速 QueSST 详细了解 NASA 和初创公司的工程师如何测试降低音爆噪音的方法 48 // 环境测试 英国沃里克的 Element 实验室敞开大门,展示了一套振动器和热室 58 // 测试讲座:挪威国防公司测试中心经理 Nammo Tron Aasmundstad 讨论武器测试 64 // 生产计量 最新的数字技术和传感器的进步使航空航天部件的生产更加精确 72 // 高速成像 超高速撞击研究对摄像机和图像处理设备提出了巨大的要求