疲劳试验控制器的组件 Manjula B K EEE 部门 BMSIT&M 摘要:本文介绍了用于材料疲劳试验的伺服液压试验系统中计算机控制的单通道控制器的开发。使用称重传感器和 LVDT 获得的闭环控制,它向控制器提供与执行器的机械位置或其施加的负载成比例的电信号。电信号通过信号调节电路进行放大,该信号被馈送到伺服控制器以生成误差信号。使用差分放大器将反馈模式(无论是行程(LVDT)还是负载模式)与相应的设定点进行比较。数字模拟转换器的附加板用于将数字形式的设定点转换为模拟值。控制器的操作显示在计算机的控制台上。关键词:疲劳试验、控制器 DAC、ADC、负载模式和行程模式 1.简介 疲劳试验是确定飞机寿命的关键要求。疲劳试验有助于确定材料承受周期性疲劳载荷条件的能力。根据设计,选择的材料应满足或超过疲劳试验应用中预期的服务负载。循环疲劳试验会产生拉伸、压缩、弯曲、扭转或这些应力组合的反复加载和卸载。疲劳试验通常以拉伸 - 拉伸、压缩 - 压缩和拉伸压缩和反向加载。要进行疲劳试验,将样品装入疲劳试验机或疲劳试验机中,并使用预定的测试应力加载,然后卸载至零负载或相反负载[1]。然后重复此加载和卸载循环,直到测试结束。根据测试参数,测试可以运行预定的循环次数,也可以运行到样品失效[2]。疲劳测试的目的通常是确定材料在循环载荷下的预期寿命,但疲劳强度和抗裂性也是常见的要求值。材料的疲劳寿命是材料在单一载荷方案下可以承受的总循环次数。疲劳测试还用于确定样品在指定循环次数内可以承受的最大载荷。这些材料的疲劳极限比其他材料高,因为在任何材料受到波动力而非恒定力的行业中,所有这些特性都极为重要。疲劳试验类型:疲劳试验有几种常见类型,以及两种常见形式:负载控制高周疲劳和应变控制低周疲劳。高周试验往往与弹性状态下的负载有关,而低周疲劳试验通常涉及塑性变形。疲劳试验的材料类型 大多数材料在其使用寿命期间可能会以某种方式经历疲劳。然而,在疲劳是一个因素的应用中,通常会发现由金属或复合材料制成的部件。
本文从宏观和微观两个角度研究了钠金属的断裂行为,并讨论了其在电池应用中的相应影响。由于钠金属在空气中极易发生反应,其机械性能尚未得到很好的研究,但本文我们在惰性气体中实施了定制的拉伸试验机以规避这一问题,从而研究了钠的断裂行为。有趣的是,我们发现钠几乎完全不受缺陷(裂纹状特征)的影响,即缺陷不会降低钠的有效强度。相反,由于钠箔具有极强的延展性,在拉伸状态下,钠箔会表现出极端的全厚度收缩,直至接近一条线。我们还使用扫描电子显微镜来识别与钠的变形和断裂相关的微观结构特征和潜在机制。此外,本研究详细介绍了这些实验观察在电池应用背景下的相应影响,并为合理设计钠基电池提供了新的见解。总体而言,这些新的实验结果可能有助于设计钠基储能系统,并避免充电和放电循环过程中的潜在机械损坏。
摘要。在本研究中,我们研究了在混凝土中添加再生塑料的效果。废塑料是从当地市场收集的。塑料的处理是一个主要问题,会产生许多负面后果。塑料是无机的,不会改变混凝土的化学特性,也不会影响其质量或稠度,使其成为建筑行业的理想材料,有助于减少塑料废物。塑料在混凝土中具有双重用途,既可用作填料成分,又可用作添加剂来增强材料的机械性能。混凝土采用五种不同体积的骨料替代量制备:10%、20%、30%、40% 和 50%。使用万能试验机浇铸、固化和测试立方体和梁。使用混凝土中使用的不同成分制成混合比例。在 7、21 和 28 天时,结果表明,抗压强度和抗弯强度随着塑料废物百分比的增加而增加。此外,抗弯强度随着塑料废物比例的增加而提高,在 30% 时达到最大值。这些结果表明,由于塑料纤维减少了混凝土中所需的工业纤维的数量,因此它也被证明更加便宜。
本研究通过在正常大气条件下使用销盘磨损试验机进行磨损试验,分析了 Mg-TiO 2 纳米复合材料的干滑动磨损行为。试验期间考虑的工艺参数是 TiO 2 纳米颗粒的重量分数、法向载荷和滑动速度。试验期间,滑动距离和磨损轨道直径分别保持恒定在 1500 m 和 90 mm。性能指标是累积磨损和摩擦系数。本研究采用基于田口的灰色关联分析来优化纳米复合材料的磨损行为。本研究中考虑的实验设计是 L9 正交阵列,每个工艺参数分为三个级别。计算每个实验的灰色关联度 (GRG),发现工艺参数组合 A3B2C1 获得的最大 GRG 为 0.825,分别对应于 5wt% TiO 2、1 kg 法向载荷和 1.5 m/s 滑动速度。将初始估算的 GRG 与最佳工艺参数的预测值和实验值进行比较,发现 GRG 分别提高了 2.2% 和 0.77%。进行方差分析 (ANOVA) 以估计对纳米复合材料的磨损行为有显著影响的工艺参数,随后得出结论,除其他因素外,工艺参数法向载荷是最重要的因素。
本研究旨在制备基于聚醚酰亚胺 (PEI)-硅橡胶二元共混物的纳米复合材料,其中掺入了不同含量的纳米二氧化钛颗粒。纳米复合材料采用双螺杆挤出机通过熔融共混工艺制备。借助热重分析仪 (TGA) 和动态力学分析仪 (DMA) 研究了所开发的纳米复合材料的热性能。使用扫描电子显微镜 (SEM) 分析纳米复合材料的形态特性。通过万能试验机 (UTM) 评估了纳米复合材料的机械性能(拉伸强度、拉伸模量、断裂伸长率、冲击强度)。机械测试结果表明,在共混聚合物基质中添加 1 phr 纳米钛时,拉伸强度增加 35%,拉伸模量增加 3%,冲击强度增加 41%。含有 1 phr 纳米钛的纳米复合材料的热稳定性最高。 DMA 结果表明,在 50°C 下,与纯共混体系相比,含有 1 phr 纳米钛的纳米复合材料的储能模量增加了 69%。SEM 显微照片清楚地表明,与其他纳米复合材料相比,含有 1 phr 纳米钛的纳米复合材料具有最小的域尺寸。这可能是由于 1 phr 纳米钛在聚合物基质中均匀分散,随后与聚合物填料相互作用相当好。
摘要 本研究推荐并评估了用于弗吉尼亚州热拌沥青的性能等级 (PG) 粘合剂。十种常规粘度等级沥青水泥(代表弗吉尼亚州通常可用的沥青)根据 PG 系统进行分级,以与新系统进行交叉参考。根据粘度等级沥青的过去性能和 PG 粘合剂测试,PG 64-22 粘合剂被选为弗吉尼亚州的沥青基础等级。使用佐治亚州载重轮试验机和沥青路面分析仪进行了实验室研究,以评估增加高温粘合剂等级对重载或慢速交通的用途。基于这些研究和现场试验部分的成功,开发了两种新的混合类型 SM-2D 和 SM-2E,它们都是 50 击马歇尔混合料,分别与 PG 70-22 和 PG 76-22 粘合剂混合。较低的实验室压实工作量将增加沥青含量以提高耐久性,而较硬的粘合剂将防止车辙。使用沥青路面分析仪为弗吉尼亚州交通部表面混合料开发了一个大型现场车辙深度数据库。这些数据用于估计最大车辙深度标准,以保证未来沥青混合料设计、粘合剂和稳定剂的质量并进行评估。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
目的:研究基质金属蛋白酶(MMPs)抑制剂在体内对自酸蚀粘合剂中树脂复合材料与牙本质微拉伸粘结强度的影响。对象和方法:研究纳入九只成年杂种犬。在狗口的上下颌(犬齿 - 第一和第二磨牙)共制备90个标准化I类腔。根据使用的MMP抑制剂类型将牙齿分为三组(n = 30):对照组(不使用MMPs抑制剂),CHX组(2%葡萄糖酸氯己定,Kempetro,ARE)和EDTA组(乙二胺四乙酸,META BIOMED,CO.LTD,韩国)。每组根据测试期6个月和12个月又分为两个亚组(n=15)。在每个测试期结束时,处死动物,然后将牙齿与颌骨分离。将每颗牙齿安装到切割机上,在水冷条件下切成一系列1mm厚的板。使用万能试验机测量每个样品的微拉伸粘结强度。将数据制成表格并进行统计分析。结果:微拉伸粘结强度结果显示,6个月后,CHX的数值明显高于EDTA,而12个月后,CHX的数值明显低于EDTA和对照组。结论:使用EDTA可提高12个月老化后的微拉伸粘结强度,而CHX和对照组的粘结强度随年龄增长而降低。
摘要 目的。脑皮层电图 (ECoG) 阵列对大脑施加的力在弯曲以匹配颅骨和大脑皮层的曲率时表现出来。这种力量会对患者的短期和长期结果产生负面影响。在这里,我们提供了一种新型液晶聚合物 (LCP) ECoG 阵列原型的机械特性,以证明其更薄的几何形状可以减少可能施加到大脑皮层的力。方法。我们构建了一台低力弯曲试验机来测量 ECoG 阵列弯曲力,计算其有效弯曲模量,并近似计算它们可以对人脑施加的最大力。主要结果。经测试,LCP ECoG 原型的最大力比任何市售 ECoG 阵列的最大力小 20%。然而,作为一种材料,LCP 的刚性比传统上用于 ECoG 阵列的硅胶高出 24 倍。这表明较低的最大力是由于原型的轮廓较薄(2.9 × –3.25 ×)。重要性。虽然降低材料刚度可以降低 ECoG 阵列表现出的力,但我们的 LCP ECoG 阵列原型表明,柔性电路制造技术也可以通过减小 ECoG 阵列厚度来降低这些力。必须对 ECoG 阵列进行弯曲测试才能准确评估这些力,因为聚合物和层压板的材料特性通常与尺度有关。由于所用的聚合物是各向异性的,因此弹性模量不能用于预测 ECoG 弯曲行为。考虑到这些因素,我们使用了四点弯曲测试程序来量化 ECoG 阵列弯曲对大脑施加的力。通过这种实验方法,可以设计 ECoG 阵列以最大限度地减少对大脑施加的力,从而可能改善急性和慢性临床效用。