摘要 能够估计药物在临床试验中获得批准的概率为优化药物研究工作流程提供了天然优势。临床试验的成功率对成本、开发时间以及严格的监管审批流程的压力有着深远的影响。我们提出了一种机器学习方法,该方法可以使用生物活性、化合物的物理化学性质、靶标相关特征和基于 NLP 的化合物表示以可靠的准确度预测试验结果。生物活性从未被用作预测特征。我们从临床试验中提取了药物-疾病对,并使用多个数据源将靶标映射到该对。实证结果表明,集成学习优于独立训练的小数据 ML 模型。我们报告了从随机森林分类器得出的结果和推论,该分类器的平均准确率为 93%,并且“通过”类的 F1 得分为 0.96。“通过”是指所有临床试验的两个类别(通过/失败)之一,该模型在预测“通过”类别方面表现良好。特征分析表明,生物活性在预测临床试验结果方面发挥着重要作用。我们付出了巨大努力来制作数据集,这是首次将临床试验信息与蛋白质靶标整合在一起。本研究提供了映射这些实体的所有代码,所有数据均来自公开来源。虽然我们的模型在包含生物活性时识别出低位推论,但整合生物活性和靶标信息的代码使研究人员能够访问深度策划和专有的临床试验数据库,从而获得更深入的见解、更好的统计意义以及更好地预测试验失败的能力。
完整作者名单: Mozaffari, Mohammad;多伦多大学,土木与矿物工程 Liu, Wei;多伦多大学,土木与矿物工程 Ghafghazi, Mason;多伦多大学,土木与矿物工程 工程
a 英国 MRC 神经精神遗传学和基因组学中心和卡迪夫大学脑研究成像中心,卡迪夫大学医学和心理学学院,卡迪夫,英国;b 荷兰马斯特里赫特大学健康、医学和生命科学学院,精神健康和神经科学学院;c 英国班戈大学心理学学院;d 荷兰马斯特里赫特大学心理学和神经科学学院,认知神经科学系;e 荷兰马斯特里赫特 Brain Innovation BV;f 英国卡迪夫大学医学院试验研究中心;g 英国卡迪夫大学物理和天文学院;h 德国莱比锡马克斯普朗克人类认知和脑科学研究所自适应记忆研究小组;i 英国芒廷阿什 Cwm Taf Morgannwg 大学卫生委员会成瘾服务中心;j 英国达勒姆大学心理学系
在过去 20 年里,艾滋病毒感染者的寿命一直在延长 [1]。2015 年,65 岁以上的人占美国艾滋病毒阳性人口的 16% [2],2013 年全球 50 岁以上的艾滋病毒感染者 (PLWH) 数量超过 420 万,其中撒哈拉以南非洲地区的负担最重(250 万),其次是西欧/中欧和北美(* 80 万)和亚太地区(* 40 万)[3]。最近对瑞士艾滋病毒队列的分析发现,65 岁的 PLWH 比年轻的 PLWH 服用了更多的额外药物和更复杂的抗逆转录病毒疗法 (ART) 方案 [4]。法国的一项回顾性队列研究对 9000 名接受联合 ART 治疗的 65 岁以上艾滋病病毒感染者进行了研究,发现药物相互作用 (DDI) 很常见(17% 的个体经历过 1 次 DDI),这大大增加了医疗成本,相对于倾向评分匹配且没有 DDI 的艾滋病病毒感染者 [5]。由于老年人患合并症的风险较高,并且可能面临多种药物治疗的挑战,因此确保 ART 在该人群中的安全性和耐受性至关重要 [6]。一线 ART 通常由两种核苷逆转录酶抑制剂 (NRTI) 组成
卫星和其他航天器中使用的电子器件暴露在宇宙辐射中。为了确保这些器件的可靠性,应仔细研究辐射的影响。评估电子设备辐射可靠性的主要方法是测量其单粒子效应 (SEE) 截面与离子束电离功率的关系。之前已经发表了许多关于太空应用的 SEE 结果 [1-4]。本文讨论的研究旨在确定电子设备对单粒子闩锁 (SEL) 和单粒子翻转 (SEU) 的灵敏度。对十种不同类型的 CMOS 器件进行了 SEE 测量,包括 ADC、DAC、模拟开关、MOSFET 驱动器、数字合成器、延迟缓冲器和晶体振荡器。
卫星和其他航天器中使用的电子器件暴露在宇宙辐射中。为了确保这些器件的可靠性,应仔细研究辐射的影响。评估电子设备辐射可靠性的主要方法是测量其单粒子效应 (SEE) 截面与离子束电离功率的关系。之前已经发表了许多关于太空应用的 SEE 结果 [1-4]。本文讨论的研究旨在确定电子设备对单粒子闩锁 (SEL) 和单粒子翻转 (SEU) 的灵敏度。对十种不同类型的 CMOS 器件进行了 SEE 测量,包括 ADC、DAC、模拟开关、MOSFET 驱动器、数字合成器、延迟缓冲器和晶体振荡器。
卫星和其他航天器中使用的电子器件暴露在宇宙辐射中。为了确保这些器件的可靠性,应仔细研究辐射的影响。评估电子设备辐射可靠性的主要方法是测量其单粒子效应 (SEE) 截面与离子束电离功率的关系。之前已经发表了许多关于太空应用的 SEE 结果 [1-4]。本文讨论的研究旨在确定电子设备对单粒子闩锁 (SEL) 和单粒子翻转 (SEU) 的灵敏度。对十种不同类型的 CMOS 器件进行了 SEE 测量,包括 ADC、DAC、模拟开关、MOSFET 驱动器、数字合成器、延迟缓冲器和晶体振荡器。
卫星和其他航天器中使用的电子器件暴露在宇宙辐射中。为了确保这些器件的可靠性,应仔细研究辐射的影响。评估电子设备辐射可靠性的主要方法是测量其单粒子效应 (SEE) 截面与离子束电离功率的关系。之前已经发表了许多关于太空应用的 SEE 结果 [1-4]。本文讨论的研究旨在确定电子设备对单粒子闩锁 (SEL) 和单粒子翻转 (SEU) 的灵敏度。对十种不同类型的 CMOS 器件进行了 SEE 测量,包括 ADC、DAC、模拟开关、MOSFET 驱动器、数字合成器、延迟缓冲器和晶体振荡器。
在兰利 14 英尺乘 22 英尺亚音速风洞中测试了一个 1/8 比例的翼内风扇概念模型。这一概念是格鲁曼航空航天公司(现为诺斯罗普格鲁曼公司)考虑为美国陆军开发的设计(定为 755 型)。悬停测试在隧道附近的模型准备区进行。随着风扇推力的变化,距压力仪表地平面的高度、俯仰角和滚转角都会发生变化。在风洞中,随着风扇推力的变化,攻角和侧滑角、距风洞地板的高度和风速都会发生变化。在模型准备区和风洞中,针对几种配置测量了模型上的空气载荷和表面压力。主要的配置变化是改变安装在风扇出口以产生推进力的叶片角度。在悬停测试中,随着模型离地面高度的降低,推力消除法向力在风扇转速恒定的情况下发生了显著变化。最大的变化通常是高度与风扇出口直径之比小于 2.5。通过使用叶片将风扇出口气流偏向外侧,可以显著减少这种变化。在风洞中,对许多叶片角度配置进行了滚转、偏航和升力控制测试。还评估了襟翼偏转和尾翼入射角等其他配置特征。尽管 V 型尾翼增加了静态纵向 s