20 世纪 60 年代末,人们开始研究终端空中交通管制的自动化(Martin and Willet,1968 年)。该系统为管制员提供速度和航向咨询,以帮助提高最后进场的间隔效率。尽管该系统的交通测试显示着陆率有所提高,但管制员发现他们的工作量增加了,因此拒绝使用该系统。对该概念的研究表明,虽然设计的某些方面是合理的,但当时的技术限制了它的接受度,尤其是缺乏足够的管制员界面。最近,由于引入了现代计算机处理和界面,以及采用了更谨慎的设计方法,几种自动化系统已在欧洲投入使用(Volckers,1990 年;Garcia,1990 年)。但是,这些系统不包含复杂跑道操作的详细模型。此外,最近的快速时间模拟研究证实,在终端区域管制员的主动咨询的帮助下,着陆率有可能提高(Credeur and Capron,1989 年)。
动物的身体影响神经系统如何产生行为。因此,2对感觉运动行为神经控制的详细建模需要3个身体的详细模型。在这里,我们在Mujoco Physics发动机中贡献了4种水果果蝇Melanogaster的解剖学生物力学全身模型。我们的模型是通用的,5可以在陆地和空气中模拟各种频率行为。我们通过模拟逼真的运动和步行来证明模型的6个通用力。为了支持7这些行为,我们通过流体力和8种粘附力的现象学模型扩展了穆霍科。通过数据驱动的端到端强化学习,我们证明了9这些进步使能够基于高级转向控制信号的复杂轨迹进行现实运动10的神经网络控制器的训练。我们通过训练12个模型来证明11使用视觉传感器以及重复使用预训练的通用式旋转控制器。我们的项目是一个开源平台,用于在体现的上下文中对感觉运动行为的神经控制建模。14
研究工作 我的研究集中在开发计算建模技术上,以便更好地了解人类行为背后的神经解剖学和功能。我的工作主要集中在高场和超高场的磁共振成像 (MRI)。在方法论和应用工作中,我推进了层状 MRI 和 fMRI 的研究、脑髓鞘和铁的体内成像、小脑皮层和神经血管的映射以及皮层下分区。凭借计算神经解剖学的坚实基础,我最近研究了白质病理对认知和健康的影响、功能连接梯度的解剖学基础以及神经可塑性对 MRI 的影响。我最近的努力更加集中于构建皮层下结构和功能的详细模型,皮层下是人类大脑中一个重要但研究不足的区域,通过从显微镜到系统架构和认知模型的跨越。这些努力不仅体现在国际期刊和会议的出版物中,也体现在开源软件包和开放数据集等开放科学成果中。
摘要:本文介绍了一种通过甲烷化过程将氢气转化为 SNG(合成天然气)的发电系统。我们在分析中建立了系统所有元素的详细模型。我们假设风电场和氢气发生器之间有直接连接。为了便于计算,我们还假设氢气发生器每天由可再生能源供电 9 小时(21:00 至 06:00 之间),这对应于能源需求的非高峰期。此外,还引入了一个氢气罐,以最大限度地延长甲烷化反应器的运行时间。使用 Matlab 软件模拟了系统主要组件之间的协作。本文的主要目的是评估各种参数对所提系统运行的影响,并通过考虑最重要的约束条件来优化其年度运行。分析还考察了可再生能源(8 至 12 MW)和氢气发生器(3 至 6 MW)的不同标称功率值。实施所提出的配置,考虑到氢气发生器和甲烷化反应器的直接连接,表明它对测试配置中各个子系统的动态和运行时间产生积极影响。
摘要:使用可再生能源(RES)(例如风能和太阳能)正在迅速增加,以满足不断增长的电力需求。但是,Res的间歇性质对网格稳定性构成了挑战。 储能(ES)技术通过为系统增加灵活性提供了解决方案。 随着分布式能源(DER)的出现以及向基于生产者的电力系统的过渡,能源管理系统(EMS)对于协调不同设备的运行并优化系统效率和功能至关重要。 本文为住宅光伏(PV)和电池系统提供了EMS,该EMS解决了两个不同的功能:能源成本最小化和自我消费最大化。 拟议的EMS考虑了设备及其下层控制器的操作要求。 遗传算法(GA)用于解决优化问题,确保根据第二天的预测在一天结束时确保所需的充电状态(SOC),而无需离散允许连续搜索空间的SOC过渡。 强调遵守制造商的操作规范以避免过早电池降解的重要性,并通过简单的关税驱动解决方案进行比较分析,评估总成本,能源交换和峰值功率。 测试是在详细模型中进行的,其中电源电子转换器(PEC)及其本地控制器与EMS一起考虑。但是,Res的间歇性质对网格稳定性构成了挑战。储能(ES)技术通过为系统增加灵活性提供了解决方案。随着分布式能源(DER)的出现以及向基于生产者的电力系统的过渡,能源管理系统(EMS)对于协调不同设备的运行并优化系统效率和功能至关重要。本文为住宅光伏(PV)和电池系统提供了EMS,该EMS解决了两个不同的功能:能源成本最小化和自我消费最大化。拟议的EMS考虑了设备及其下层控制器的操作要求。遗传算法(GA)用于解决优化问题,确保根据第二天的预测在一天结束时确保所需的充电状态(SOC),而无需离散允许连续搜索空间的SOC过渡。强调遵守制造商的操作规范以避免过早电池降解的重要性,并通过简单的关税驱动解决方案进行比较分析,评估总成本,能源交换和峰值功率。测试是在详细模型中进行的,其中电源电子转换器(PEC)及其本地控制器与EMS一起考虑。
摘要 - 在本文中,我们提出了一种用于地区供暖网络(DHNS)的经济非线性模型预测控制(MPC)算法。所提出的方法具有生产者,多个生产者和存储系统,这是第四代DHN的重要组成部分。这些网络通过它们优化其运营的能力,旨在降低供应温度,适应分布式的热源以及利用热含量和存储提供的灵活性,这对于实现化石燃料燃料的能源供应至关重要。开发一个智能能源管理系统来实现这些目标,需要高度复杂的非线性系统和能够处理大规模优化问题的详细模型。为了解决这个问题,我们引入了一个基于图的优化模型,该模型有效地集成了分布式生产者,生产者,存储缓冲区和双向管流,以便可以在实时MPC设置中进行影响。此外,我们进行了几个数值实验,以评估闭环中提出的算法的性能。我们的发现表明,MPC方法比传统的基于规则的控制器获得了多达9%的成本提高,同时更好地维护系统限制。
虽然此工作表不是 AE、BA 或 EA 计划设计的成本分摊结构的详细模型,但必须清楚地展示分级成本分摊和福利管理计划对利用率的影响。考虑到拟议的福利,仿制药和品牌药之间以及零售和邮寄之间的利用率分布必须合理。与 DS 竞标相比,替代福利的重大变化预计会导致利用率出现显著差异。D 部分赞助商必须通过在工作表 6 中调整利用率和平均脚本定价来模拟替代福利与 DS 相比的影响。分布必须基于为 DS 覆盖范围定义的间隔。为了模拟替代覆盖范围,必须在 DS 覆盖范围内报告成员的索赔间隔内报告成员,即使由于替代福利的影响,他们的总药物支出可能有所不同。例如,第 1 行至第 10 行必须反映预计允许成本小于或等于灾难性阈值的成员的 AE、BA 或 EA 计划的利用率。换句话说,i、j 和 k 列中汇总的金额必须基于每行 f、g 和 h 列中所表示的相同成员。
摘要。在组装,焊接和绘画等行业中,对精确和多功能机器人系统的需求越来越多,这表明了运动学分析的重要性。本文旨在研究和解释三度(3-DOF)操纵器的运动学特性,该操作器涵盖了旋转磁盘,例如基础和两个旋转的接头,也称为旋转接头。通过分析前进和逆运动学,本文旨在更好地理解并控制该机器人臂显示的运动性质。Forward kinematics entails calculating the values of the location and orientation of the end effector in connection with particular joint parameters.另一方面,逆运动学旨在找到特定的关节参数,以达到特定的最终效果位置。本文使用数学模型和计算算法来求解运动学方程,从而使操纵器可以精确地移动其域内。通过比较所使用的转换矩阵的详细模型,机器人组的工作移动得到了完全预测和调节。从这种批判性分析中得出的结论是,所提出的解决方案导致对机器人运动运动的理论理解有重大飞跃,并有效地对精确的工作自动化环境具有有效的影响。因此,此基础为开发高级机器人控制算法创建了更多途径。
掌握心血管技能和知识的掌握长期以来一直在为学生带来挑战,尽管现代技术进步以及诸如解剖之类的良好方法,但高级思维证明了艰难的思维。因此,我们试图将积极的嬉戏学习纳入我们在心血管解剖学和生理学领域的基础教学中。七十七年的学生参加了在线教学演讲,然后一周后,参加了嬉戏的学习会议,他们在学术的指导下使用Play-Doh来制作人类心脏的详细模型,以巩固他们的先前学习。他们获得了五点李克特问卷的邮政活动,并提出了四个其他公开答案问题,并使用加权平均值(𝑥̄𝑤)分析了回答,作为正面回答的阈值。广泛地说,学生喜欢并会重复一项嬉戏的活动,并认为这项活动增加了他们的兴趣,证明了他们的知识,确定了他们的弱点,检查了他们现有的知识,并允许他们与团队互动,但学生没有比传统活动本身学习更多的学习。使用Play-Doh对心脏进行建模是一种有趣而有效的解剖方法,需要进一步的研究来确定其对学生成果的影响。
摘要:为了有效地利用需求侧和分布式能源 (DER) 来动态维持电力平衡,必须克服大规模控制和协调建筑设备和 DER 的挑战。尽管文献中已经提出了几种控制技术,但在实践中应用这些技术的一个重大障碍是无法获得有效的测试平台。使用真实设备进行大规模测试是不切实际的,因此模拟是进行实际规模开发测试的唯一可行途径。现有的电网测试平台无法对单个住宅终端设备进行建模,无法为响应负载和 DER 开发详细的控制公式。此外,它们无法在亚分钟级的时间尺度上模拟控制和通信。为了解决这些问题,本文提出了一种用于交互式能源管理系统的新型电网模拟测试平台。提供了主要家用电器(例如,加热和冷却系统、热水器、光伏板、储能系统)的详细模型,以模拟响应环境参数和控制命令的实际负载行为。所提出的测试平台整合了即将部署的软件,并使可部署软件能够与各种建筑设备模型进行交互,以进行大规模端到端性能评估。