许多科学家 [Lynch,1960;Piaget 和 Inhelder,1967;Siegel 和 White,1975] 已经观察到认知地图被组织成连续的层,并提出对大规模环境的有用且有力的描述的核心要素是拓扑描述。分层模型包括从局部感官信息中识别和辨认地标和地点;路线控制知识(从一个地方到另一个地方的过程);连通性、顺序和包含的拓扑模型;以及形状、距离、方向、方位以及局部和全局坐标系的度量描述。看来,认知地图的分层结构是人类在大规模空间中稳健表现的原因。我们的方法试图将这些方法应用于机器人探索和地图学习问题。我们定性方法中对环境的核心描述是拓扑模型,如 TOUR 模型 [Kuipers,1978]。该模型由一组节点和弧组成,其中节点代表环境中可识别的位置,弧代表连接它们的行进路径。节点和弧是根据机器人的感觉运动控制能力程序性定义的。度量信息添加到拓扑模型之上。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
下一代对话式 AI 系统需要:(1)逐步处理语言,逐个标记,以提高响应速度,并能够处理对话现象,例如暂停、重新开始和自我更正;(2)逐步推理,允许建立超出所说内容的意义;(3)透明且可控,允许设计人员和系统本身轻松确定特定行为的原因并针对特定用户组或领域进行定制。在这篇短文中,我们介绍了正在进行的初步工作,将动态语法(DS) - 一种增量语义语法框架 - 与资源描述框架(RDF)相结合。这为创建增量语义解析器铺平了道路,该解析器在话语展开时逐步输出语义 RDF 图。我们还概述了如何通过 RDF 将解析器与增量推理引擎集成。我们认为,这种 DS - RDF 混合体满足了上面列出的要求,产生了可用于构建响应式、实时、可解释的会话式 AI 的语义基础设施,可以针对特定用户群体(例如痴呆症患者)快速定制。
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
摘要。气候变化评估社区依赖于广泛接受的风险及其组成部分的定义,例如危害,暴露和脆弱性,由著名的国际组织气候变化小组(IPCC)提供。这些年来,这些风险的定义一直在发生变化,并以一种一般和“常识”的形式提出,因为公共社会需要理解它们,并容纳了不同研究流所接受的风险概念。但是,这些定义在操作气候风险评估程序中已证明无效,这暴露了歧义的关键需求。本文通过解开IPCC最新定义和词汇表的基于的关于价值和风险(掩盖)的共同本体的定义和词汇表,以解决气候变化评估中的风险和同源概念的语义清晰度。这项研究为气候变化研究中的风险提供了更精确,更精致的本体论基础,可以更好地与场景和评估的复杂性保持一致,并通过支持更有效的沟通和对气候相关风险的更有效沟通和评估,从而有助于气候变化研究,并对其进行缓解和适应。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
摘要 本文讨论了可用的人工智能 (AI) 模型的组合,即神经语言模型 (NLM) 与经过训练的 GAN 和人类解释,以促进架构构思。工作流程使用语义提示识别推测设计的概念场景。结果成为视觉参考,以补充修订的语义描述,以指导 VQGAN+CLIP 模型,利用对结果的控制,然后使用降维对结果进行排序,并进一步策划以训练其他模型 (GAN)。NLM 对文本输入的解释增加了跨越更大语义距离的可能性,以实现创造性的视觉结果,而 AI-人类步骤的嵌套工作流程可以自动查询更大的解决方案空间。此外,它还考虑了基于语言 (NLM) 的处理模型 (LeCun, 2021) 导致的视觉数据 (Hadamard, 1945) 的低带宽、还原编码问题,这可能会限制设计机构。
正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
摘要 人类在感知方面表现出重力优势:我们能更精确地判断向下移动物体的速度,而不是向上移动物体的速度,这表明重力加速度是一种内在化的先验。然而,尚不清楚这种重力先验是完全基于感知线索,还是可以结合语义知识。先前的研究仅使用了已知服从重力的物体,可能混淆了语义和感知线索。在这里,我们通过要求参与者判断通常与重力(球)或逆重力(火箭)相干移动的物体的速度来解决这个问题。我们的结果显示,无论物体身份如何,下落刺激都具有感知优势,这表明重力先验是基于感知线索的。