以前,我们表明在Harsha湖水样品中预防性添加葡萄糖可以抑制蓝细菌的生长,至少在短时间内。当前的研究在整个Harsha Lake Bloom季节都用葡萄糖测试了蓝细菌对照。水样(1000毫升)从6月9日开始从Harsha Lake收集,从6月9日开始,一直持续到2022年8月24日。到两个7升聚丙烯容器中的每个容器中,加入了500毫升的Harsha湖水,并将容器放置在受控环境室中。添加了一个标记为“处理过的”的容器,添加了0.15 g的葡萄糖,并且在标有“控制”的容器中没有任何添加。之后,收集了每个容器的三个25 mL样品,并每周用于16S rRNA基因测序。然后,每周新收集1000毫升Harsha湖水,每个容器中添加500毫升,并在“处理过”的容器中添加0.15 g葡萄糖。示例数据用于检查处理容器和对照容器之间细菌群落组成的差异。用葡萄糖治疗通过1)减少分类分类的多样性,2)在很大程度上消除了蓝细菌分类群,以及3)增加非细菌分类群的子集的相对丰度(例如proteeeabobacteria and Proteeebacteria and actacinobacteriota)。尽管每周直接从湖水衍生出投入,但在时间上观察到了这些影响。在每周接收湖水中添加葡萄糖的情况下,在整个夏季布鲁姆季节中抑制了蓝细菌种群。葡萄糖似乎以氰基细菌为代价刺激某些细菌类群的多样性。
与模型无关的可解释人工智能工具通过“局部”特征贡献来解释其预测。我们通过实证研究了两种优于当前方法的潜在改进。第一种方法是始终以用户认为对结果有积极贡献的形式来呈现特征贡献(“积极框架”)。第二种方法是添加“语义标签”,解释每个特征贡献的方向性(“该特征可使合格率提高 5%”),从而减少额外的认知处理步骤。在一项用户研究中,参与者评估了针对贷款申请和音乐推荐的不同框架和标签条件的解释的可理解性。我们发现,即使预测为负面,积极框架也能提高可理解性。此外,添加语义标签可以消除任何框架对可理解性的影响,积极标签的表现优于消极标签。我们在 ArgueView[11] 包中实现了我们的建议。
摘要 - 视觉进程(VO)在自主系统中起关键作用,主要挑战是相机图像中缺乏深度信息。本文介绍了OCC-VO,这是一个新颖的框架,该框架利用了深度学习的最新范围,将2D摄像机图像转换为3D语义占用,从而规定了传统的同时估计自我姿势和地标地点的需求。在此框架内,我们利用TPV形式将环绕摄像机的图像转换为3D语义占用。解决了这种转换所带来的挑战,我们专门为姿势估计和映射算法定制,该算法结合了语义标签滤波器,动态对象滤波器,最后利用Voxel Pfilter来维护一致的全局语义映射。对OCC3D-NUSCENES的评估不仅展示了成功率提高了20.6%,并且针对ORB-SLAM3的轨迹精度提高了29.6%,而且还强调了我们构建全面地图的能力。我们的实施是开源的,可在以下网址提供:https://github.com/ustclh/occ-vo。
使用单镜相机完成3D语义场景完成的任务在自动驾驶领域受到了极大的关注。此任务旨在预测部分图像输入中3D场景中每个体素的现场状态和语义标签。尽管存在许多方法,但许多人都面临着诸如不准确预测对象形状和错误分类对象边界的挑战。为了解决这些问题,我们提出了Depthssc,这是一种仅使用单眼摄像机完成语义场景的高级方法。DEPTHSSC与几何感知体素化(GAV)集成了SpaTial变换图融合(ST-GF)模块,从而使Voxel分辨率的动态调整能够适应3D空间的几何复杂性。这确保了空间和深度信息之间的精确比对,从而有效地减轻了诸如对象边界畸变和以前方法中发现的深度不正确感知之类的问题。对Semantickitti和sscbench-Kitti-360数据集的评估表明,DepthSSC不仅有效地捕获了复杂的3D结构细节,而且还可以实现最先进的性能。
是否有不同的神经网络,接受过各种视觉任务的培训,共享一些共同的表示?在本文中,我们证明了我们在具有不同体系结构,不同任务(生成和歧视本地)以及不同类型的监督(班级监督,私人文本,文本监督,自学,自我求职,自我求助)的一系列模型中称为“ Rosetta神经元”的存在。我们提出了一种用于挖掘跨多种流行视觉模型的Rosetta神经元词典的算法:类监督 - Resnet50,Dino-Resnet50,Dino-Vit,Mae,Mae,Clip-Resnet50,Big-Gan,Big- Gan,stylegan-gangan-2,stylegan-xl。我们的发现表明,某些视觉概念和结构在自然世界中固有地植根于自然界,并且可以通过不同的模型来学习,而不论特定的任务或体系结构,并且不使用语义标签。,由于我们的分析中包含的生成模型,我们可以直接可视化共享概念。Rosetta神经元促进了模型对模型翻译,实现了各种基于反转的操作,包括跨级比对,变化,放大等,而无需进行专业培训。
抽象准确地定位了3D声音源并估算其语义标签(其中可能不可见,但假定源位于场景中物体的物理表面上)具有许多真实的应用,包括检测气体泄漏和机械故障。在这种情况下,视听弱相关性在得出创新方法时提出了新的挑战,以回答是否或如何使用交叉模态信息来解决任务。朝着这一目标,我们建议使用由针孔RGB-D摄像头和共面四通道麦克风阵列(MIC-ARRAY)组成的声学相机钻机(MIC-Array)。通过使用此钻机来记录来自多视图的视听信号,我们可以使用跨模式提示来估计声源3D位置。特别是,我们的框架Soundloc3d将任务视为集合预测问题,集合中的每个元素都对应于潜在的声源。鉴于视听弱相关,首先是从单个视图mi-crophone阵列信号中学到的集合表示,然后通过主动合并从多视rgb-d图像揭示的物理表面提示来确认。我们证明了Soundloc3d在大型模拟数据集上的效率和优势,并进一步显示了其对RGB-D测量不准确性和环境噪声干扰的鲁棒性。
摘要 - 在3D中了解我们世界的动态对于机器人应用的性能和稳健性至关重要。尽管最近的进度已与视觉模型和体积渲染结合起来提供语义3D表示形式,但大型模型的推理时间既不是实时机器人操作的所需更新速度。在这项工作中,我们建议将“对象”注入基于3D高斯人的语义表示[1]。具有相同语义标签的高斯人可以一起初始化和更新,从而导致快速更新,以响应机器人和对象运动。所有必要的语义信息都是从验证的基础模型的第一步中提取的,从而规避了大型模型的推理瓶颈,但仍获取语义信息。只有三个相机视图,我们提出的表示形式可以实时捕获30 Hz的动态场景,这对于大多数操纵任务就足够了。通过基于我们的对象感知的高斯分裂来利用表示形式,我们能够求解语言条件的动态握把,为此,机器人抓取了开放词汇查询指定的动态移动对象。我们还使用该表示形式通过行为克隆来训练视觉运动策略,并表明该策略通过预审计的编码者获得了基于图像的策略的可比结果。视频https://object-aware-gaussian.github.io
生成的3D部分组装涉及了解零件关系,并预测其6-DOF姿势,用于组装逼真的3D形状。先前的工作通常集中在各个部分的几何形状上,忽略了整个物体的零件。利用两个关键的观察:1)超级部分姿势提供了有关零件姿势的强烈提示,而2)由于较少的超级部分,预测超级零件的姿势更容易,我们提出了一个零件 - 整个层次结构消息传递网络,以实现有效的3D零件组件。我们首先通过在没有任何语义标签的情况下对几何相似部分进行分组,从而引入超级零件。然后,我们采用零件整体的层次编码器,其中超级零件编码器预测基于输入部分的潜在超级零件姿势。随后,我们使用潜在姿势转换点云,将其馈送到零件编码器中,以汇总超级零件信息和有关零件关系的推理以预测所有部分姿势。在培训中,仅需要地面零件姿势。在推断期间,超级零件的预测潜在可增强可解释性。Partnet数据集上的实验结果表明,我们的方法可以部分地达到最新的功能和连接精度,并实现可解释的层次结构组件。代码可在https://github.com/pkudba/3dhpa上找到。
p-糖蛋白(P-gp)是ATP结合盒(ABC)转运蛋白家族的成员,在多药耐药性(MDR)在癌症治疗中起着至关重要的作用。p-gp积极地从癌细胞中泵送化学治疗药物,降低其细胞内浓度,从而降低其疗效。本综述探讨了P-gp对MDR贡献的机制,包括内在和获得的抗性。它还讨论了抑制P-gp的各种策略,例如阻断药物结合位点,干扰ATP水解以及改变细胞膜整体性。还检查了第四代P-gp抑制剂和其他新型抑制剂的潜力,以增强癌症疗法的有效性。理解和克服P-gp介导的MDR对于改善癌症患者的治疗结果至关重要。关键字