G. Denaro,D。Gaglione,N。Forti,A。 Simone,F。Daffina,G。Bottini,D。Quattrociocchi,L.Millefiori,P.Braca,S。Carniel,P。Willett,A。Iodice,D。Riccio,D。Riccio,A。Farina,“空间全球海上监视”。 第一部分:卫星技术,“ IEEE航空和电子系统杂志,2021年。Simone,F。Daffina,G。Bottini,D。Quattrociocchi,L.Millefiori,P.Braca,S。Carniel,P。Willett,A。Iodice,D。Riccio,D。Riccio,A。Farina,“空间全球海上监视”。第一部分:卫星技术,“ IEEE航空和电子系统杂志,2021年。
本卷包含 2019 年 10 月 9 日至 11 日在爱沙尼亚塔林举行的第 17 届 EFNIL 年会上的演讲。此次会议由爱沙尼亚语言学院、爱沙尼亚语言理事会、教育和研究部、塔林市政府、母语学会和欧盟委员会翻译总司 (DGT) 和 EFNIL 合作举办。在会议上提交的论文中,以不同的方式强调了“语言与经济”这一主题。本卷的第一篇文章基于会议上的主旨演讲,从一种或多种语言的经济权重的角度来理解语言的经济权重问题。本文主要从英语在世界范围内的重要性来讨论语言的经济权重问题。尽管经济效益与语言使用之间的联系的考虑构成了本书第一部分的基调,但它们与对经济(即有效和适当)语言使用及其与经济因素关系的思考相关。本书第一章中的论文讨论了如何将经济学家的观点系统地融入语言论述中,以及如何在现代欧洲社会中有效利用人力资本“语言”,以及在日益发展的语言产业领域中产生的实际影响。会议副标题中讨论的最后一个方面,即语言产业,指的是多语言互动的实际挑战,并提出了相当多的具体问题。管理多语言结构最明显的后果之一是专业翻译和口译的必要性,本书第二章将讨论这个问题。解决这些问题的问题——例如在欧盟机构中——无疑具有经济方面;这样的解决方案提供了经济机会,是成本效益计算的对象。下一部分是关于在多语言环境中掌握和使用多种语言的好处(以及某些语言技能的局限性)。文章举例说明了多种语言是否以及在何处使用有效且具有经济优势。在关于简单语言作为另一种经济交流方式的论文中,讨论了近年来越来越明显的一个方面。使用简单语言可以减少误解,这一事实也产生了经济效益。本节中的论文展示了经济问题和包容性和多样性的民主概念如何重叠。
本书是我在加州大学圣克鲁斯分校开始学习阿拉伯语、印地语-乌尔都语、波斯语和梵语 16 年的成果,之后我在美国印度研究所、德里大学和德克萨斯大学奥斯汀分校继续学习。我的第一位印地语-乌尔都语老师约翰·莫克 (John Mock) 一直是我的主要灵感来源。我同样感谢美国乌尔都语研究所勒克瑙分校项目的所有老师,感谢他们的耐心,感谢他们带我进入乌尔都语文学的世界。我特别感谢与 Fahmida Bano、Wafadar Husain、Ahtesham Khan 和 Sheba Iftikhar 一起讨论乌尔都语单词的大量时间。在威斯康星大学麦迪逊分校,我有幸协助和观察已故的 Qamar Jalil,他的教学见解反映在本书中。在德克萨斯大学奥斯汀分校,我有幸与世界上一些最伟大的语言和文学教师一起学习。 Syed Akbar Hyder 为我提供了广泛而严格的乌尔都语文学指导。Michael Hillmann 花费数年时间训练我精通波斯语。本书阿拉伯语和波斯语单元中的许多想法和见解都直接源自他的指导。我还要感谢 Rupert Snell,我跟随他学习印地语八年,他让我领略了印地语-乌尔都语词汇的诸多乐趣以及应用语言文学的知识回报。本书也是我在加州大学伯克利分校、德克萨斯大学奥斯汀分校和威斯康星大学麦迪逊分校教授乌尔都语十一年的成果。我最初于 2008 年在威斯康星大学麦迪逊分校的南亚暑期语言学院构思了这个项目,并从与学生和同事的交谈中受益匪浅,包括 Qamar Jalil 和 Faraz Sheikh。我在德克萨斯大学奥斯汀分校的印地语-乌尔都语旗舰课程任教期间开发了这些单元的基本结构和许多课程的初稿。多年来,我在那里教过许多才华横溢的学生,但我特别感谢 Ayana D'Aguilar 和 Courtney Naquin 的反馈,他们在我研究生最后一年与我一起完成了许多练习的初稿。过去四年,我一直在加州大学伯克利分校开发和教授这些材料。他们的反馈启发了我进行无数轮的修改。特别感谢以下学生,他们在本书准备出版的最后阶段参与了本书的大部分工作:Hammad Afzal、Khudeeja Ahmed、Hammad Ali、Aparajita Das、Elizabeth Gobbo、Salil Goyal、Shazreh Hassan、Caylee Hong、Zain Hussain、Talib Jabbar、Maryam Khan、Adeel Pervez、Omar Qashoa、Adnan Rawan、Ahmad Rashid Salim、Nawal Seedat 和 Fatima Tariq。还要特别感谢 Sally Goldman 对梵文单元的有益反馈和建议,以及我的朋友和同事 Walter Hakala 在修订后期对这些单元的精辟评论。他们的反馈大大提高了本书的质量。当然,所有错误和疏忽都是我一个人的错。
摘要:结合域随机化和强化学习是一种广泛使用的方法,可以获得可以弥合模拟与现实之间差距的控制策略。但是,现有方法对域参数分布的形式进行了限制假设,该假设阻止了它们利用域随机化的全部功能。通常,选择每个参数的概率分布(例如,正常或统一)的受限制家庭。此外,基于深度学习的直接方法需要不同的模拟器,这些模拟器要么不可用,要么只能模拟有限的系统。这种僵化的假设降低了域在机器人技术中的适用性。基于最近提出的无神经可能性的内引入方法,我们引入了神经后域随机化(NPDR),这是一种算法,该算法在从随机模拟器中学习策略和在贝叶斯时尚中的模拟器参数上的策略之间交替。我们的方法仅需要一个参数化的模拟器,粗糙的先验范围,一个策略(可选的具有优化例程)和一小部分现实世界观察。最重要的是,域参数分布不限于特定族,可以将参数关联,并且模拟器不必可区分。我们表明,所提出的方法能够充分地在域参数上适应后部,以更紧密地匹配观察到的动力学。此外,我们证明了NPDR可以使用比可比算法更少的现实世界推出来学习可转移的策略。
由国家研究所出版社(National InstitutePress®9302Lee Highway)出版,套房750 Fairfax,Virginia 22031版权所有©2021由National InstitutePress®保留所有权利。本书的任何一部分都不得以任何形式重印或复制或使用,或者通过电子,机械或其他方式,现在已知或以后发明的,包括影印,记录,记录或在任何信息存储或检索系统中,未经出版商的书面许可。本书中表达的观点是作者独自一人,不代表他与他人或已隶属的任何机构。作者要特别感谢这本专着的高级审稿人,他们的投入,批评和评论极大地提高了其质量:凯瑟琳·贝利博士,彼得·L·海斯博士,彼得·H·海斯博士,罗伯特·约瑟夫大使和基思·佩恩博士。我还要感谢艾米·约瑟夫(Amy Joseph)在整个开发和生产过程中的宝贵支持。最后,作者想对史密斯·理查森基金会(Smith Richardson Foundation)和莎拉·斯卡夫(Sarah Scaife)基金会表示赞赏,以赢得这一专着的慷慨支持。