摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。
摘要在《资本循环》中,该概念论文通过后人类的镜头研究了生态教育中的“可持续性”。i展示了Deleuzoguattarian的概念如何有助于重新配置“可持续性”的功能,以作为面对日益暴力的气候危机事件时的不稳定稳定力量。目前,生态教育和“可持续性”是对这些影响的解决方案。越来越多地将“可持续”的事物用作阐明其美德的标准,尤其是在产品,消费和能源的营销中。然而,与生态女权主义的新材料批评保持一致,我建议可持续性已将其沉淀成惯性的政权,从而使已知的实践永久性地对环境有害,这是停止的命令。本文为环境教育语言提出的问题提供了新的观点,以提出激进的重新构想,以开发能够利用气候危机混乱的教育学发展。
摘要 - 视觉机器人编程在学习幼儿教育的学习计算方面具有重要的好处,例如增强创造力,了解计算概念,介绍算法,提高解决问题的技能,引入技术,协作和沟通。在学龄前儿童中引入计算概念有助于为他们做好准备,以使他们的未来越来越依赖技术和计算。Visual Robot编程语言仍然很难教给学龄前儿童,因此有必要创建一种易于使用Block编程语言的儿童教学的编程语言。编程语言的设计始于选择适当的图标,创建编程语言流以及适合儿童学习机器人编程语言的块程序。创建视觉编程语言(VPL)设计,例如在块程序中使用图标,对象拖放规则,编程语言结构,合适的机器人和为儿童使用该结构,尤其是印尼编程语言的儿童的编程语言,以使学龄前儿童更容易以母语学习(使用Bahasa)。
摘要:在数字时代,聊天机器人已成为自动化通信和改善各个部门用户体验的重要工具。本文提出了由自然语言处理(NLP)提供动力的聊天机器人助手系统,以对用户查询提供智能,上下文感知和实时响应。该系统结合了NLP技术,例如文本预处理,意图识别和实体提取,以促进有效的相互作用。我们探索系统的体系结构,工作原理和应用,以及其在不同域中的性能评估。关键字:聊天机器人,自然语言处理,NLP,意图识别,实体提取,对话系统,对话AI,文本预处理,机器学习。I.引言聊天机器人随着能够理解和回应人类语言的自动助手而广泛普及。它们用于各种应用程序,包括客户支持,虚拟助手,医疗保健等。这些系统背后的核心技术是自然语言处理(NLP),它使机器能够以有意义的方式解释,处理和生成人类语言。本文讨论了一个利用NLP技术与用户交互的聊天机器人助手系统。我们专注于关键的NLP任务,例如令牌化,意图识别和实体提取,这些任务构成了有效的对话性AI系统的骨干。II。 这些组件如下所示:系统的主要组成部分是:1。 2。 3。 4。 5。II。这些组件如下所示:系统的主要组成部分是:1。2。3。4。5。系统体系结构NLP提供动力的聊天机器人助理系统的体系结构涉及几个关键组件,它们可以和谐地处理用户查询并生成适当的响应。用户界面:用户与聊天机器人进行交互的平台或接口(例如,网站,移动应用程序,消息平台)。文本预处理:此步骤清洁并准备用户输入以进行进一步分析。它涉及令牌化,删除停止词和茎/诱饵。意图识别:系统从输入文本中确定用户的意图。这是使用机器学习或深度学习算法(例如支持向量机(SVM),随机森林或神经网络)完成的。实体提取:识别关键实体(例如日期,名称,位置等)在用户输入中。对话管理:系统决定如何根据公认的意图和提取的实体做出响应。可以使用基于规则或生成的方法来制定响应。6。响应生成:此组件根据对话上下文和用户查询生成响应。7。输出:生成的响应将发送回用户界面以进行演示。iii。方法论3.1文本预处理文本预处理是NLP任务的关键步骤,因为它将原始输入转换为结构化格式以进行分析。主要的预处理技术是:•令牌化:将输入文本分解为较小的单元(令牌),例如单词或短语。
脊髓灰质炎儿童失去polimomyélite儿童pigration poliomielite poliomyelitt poliomielite poliomielite,paralisia paralisia birtantile poliomielition polioyelite polioyelite
根据具身理论(包括具身、嵌入、扩展、演绎、情境和扎根认知方法),语言表征与我们与周围世界的互动有着内在联系,这反映在语言处理和学习过程中的特定大脑特征中。从具身理论与非模态理论的原始竞争开始,这篇共识论文讨论了一系列精心挑选的问题,旨在确定运动和感知过程何时以及如何参与语言过程,而不是是否参与。我们的研究领域非常广泛,从具身语义的神经生理特征(例如事件相关电位和场以及神经振荡)到语义处理和语义启动对具体和抽象词的影响,到第一和第二语言学习,最后,使用虚拟现实来检查具身语义。我们的共同目标是更好地理解运动和感知过程在语言理解和学习所代表的语言表征中的作用。我们达成共识,基于该领域开展的开创性研究,未来的发展方向是通过承认具体和情境语言和语义过程的多模态性、多维性、灵活性和特质来提高研究结果的外部有效性。
存在几种用于量子信息处理的图形语言,例如量子电路、ZX 演算、ZW 演算等。每种语言都形成一个 † -对称幺半范畴(† -SMC),并带有一个指向有限维希尔伯特空间的 † -SMC 的解释函子。近年来,量子力学范畴化方法的主要成就之一是为大多数这些图形语言提供了几种方程理论,使它们能够完成纯量子力学的各种片段。我们讨论如何将这些语言扩展到纯量子力学之外的问题,以便推理混合态和一般量子操作,即完全正映射。直观地说,这种扩展依赖于丢弃图的公理化,它允许人们摆脱量子系统,而这在纯量子力学中是不允许的。我们引入了一种新的构造,即丢弃构造,它将任何 † -对称幺半范畴转换为配备丢弃图的对称幺半范畴。粗略地说,这种构造在于使任何等距因果化。使用这种构造,我们为几种图形语言提供了扩展,我们证明这些语言对于一般量子操作是完整的。然而,这种构造对于一些边缘情况(如 Clifford+T 量子力学)不起作用,因为该类别没有足够的等距。
按照掩蔽语言建模 (MLM) 目标进行训练的多语言预训练语言模型 (multiPLM) 通常用于双语文本挖掘等跨语言任务。然而,这些模型的性能对于低资源语言 (LRL) 仍然不是最优的。为了改进给定 multiPLM 的语言表示,可以进一步对其进行预训练。这称为持续预训练。先前的研究表明,使用 MLM 进行持续预训练,随后使用翻译语言建模 (TLM) 进行预训练可以改进 multiPLM 的跨语言表示。然而,在掩蔽期间,MLM 和 TLM 都会给予输入序列中的所有标记相同的权重,而不管标记的语言属性如何。在本文中,我们引入了一种新颖的掩蔽策略,即语言实体掩蔽 (LEM),用于持续预训练步骤,以进一步改进现有 multiPLM 的跨语言表示。与 MLM 和 TLM 相比,LEM 将掩码限制在语言实体类型名词、动词和命名实体上,这些实体在句子中占据更重要的地位。其次,我们将掩码限制在语言实体范围内的单个标记上,从而保留更多上下文,而在 MLM 和 TLM 中,标记是随机掩码的。我们使用三个下游任务评估 LEM 的有效性,即双语挖掘、并行数据管理和代码混合情感分析,使用三种低资源语言对英语-僧伽罗语、英语-泰米尔语和僧伽罗语-泰米尔语。实验结果表明,在所有三个任务中,使用 LEM 持续预训练的多 PLM 优于使用 MLM+TLM 持续预训练的多 PLM。
符号(例如数值序列,化学公式和表格定界符)广泛存在,在与符号相关的任务中扮演重要角色,例如抽象推理,化学培养物预测和表格提问。与基于自然语言表达式的任务相比,大型语言模型(LLMS)在理解和理性的基于符号的表示方面存在局限性,因此他们很难处理与符号相关的问题。在本文中,我们提出了符号到语言(S2L),该方法将基于符号的表示形式转换为基于语言的代表,为推理过程中语言模型提供了宝贵的信息。我们发现,对于封闭源和开放源LLM,可以通过合并基于语言的代表来在很大程度上增强解决符号问题的能力。例如,通过为GPT-4使用S2L,可以进行+21的实质性改进。9%和+9。分别用于1D ARC和DYCK语言任务的准确性5%。 在其他六个一般符号相关的任务(例如表理解和推文分析)中也有一致的改进。 我们在https://github.com/thunlp-mt/symble2language 1中重新租用GPT日志。分别用于1D ARC和DYCK语言任务的准确性5%。在其他六个一般符号相关的任务(例如表理解和推文分析)中也有一致的改进。我们在https://github.com/thunlp-mt/symble2language 1中重新租用GPT日志。
如今,人们每天谈论聊天机器人时,都会犯一个错误:聊天机器人并不完美,因为它们并不总是说实话,也就是说,它们会犯事实错误,比如将虚假的陈述归咎于他人,或者引用不存在的书籍——就像我最近在一位学生的作品中发现的那样。但聊天机器人是经过训练可以说话的,尤其是在谈话中娱乐,而不仅仅是说出真相。这意味着聊天机器人比说真话的机器要强大得多,后者已经存在了很长一段时间。为了说话,你需要知道一些事情,更重要的是,你需要理解一些事情。理解某件事意味着你可以详细阐述它。如果一个聊天机器人将爱因斯坦从未说过但本可以说的话归咎于他,这意味着它在某种程度上理解了爱因斯坦的思想。任何平庸的学生都可以学会重复托马斯·阿奎那说过的话,但只有聪明的学生才能像中世纪的人所说的那样,以托马斯的方式思考。我们需要决定:我们想要总是说真话的机器还是智能的机器?因为我们拥有说真话的机器已经有一段时间了,却从未发现它们有什么集体用途,而今天它们却撒谎,我们越来越担心它们会抢走我们所有最好的工作。这就是聊天机器人如此有趣的原因:一旦我们有了一台能够相当好地说话的机器,它就会立即开始撒谎。它开始详细阐述所获得的知识,超越现状,走向可能实现的目标,但事实并非如此。