本文是我论文“优化中的建模语言:编程的新范式” [21] 25年前发表的。它揭示了我为什么需要新的编程语言范式的想法。In the meantime a lot has happened: The paradigm of constraint programming has been established, new “packages” in mathemati- cal modeling in modern programming languages, as Python, Julia, C++, a.o., have popped up recently, several commercial modeling systems are on the market, such as AIMMS, MOSEL, HEXALY, and several algebraic modeling languages, as AMPL, GAMS, LINGO, etc.已扩展。我用自己的建模语言(即LPL)做出了贡献。在我作为研究人员的职业生涯开始时,我实施了LPL(线性编程语言)作为制定几种较大LP(线性程序)的工具,我们在弗里博格大学信息学系的各种现实生活项目中使用了这些工具。很快我发现这种语言符号可以用于许多其他不同的应用程序。我在语言中添加并删除了许多功能,始终在任务中找出什么是制定和建模具体问题作为数学模型的“最简单,最短,最可读,高效)的方法。它已成为许多严重且不那么严重的应用和模型的主要操场和研究对象。寻求找到我想到的建模语言到现在还没有结束的。本文收集了我作为老师,研究人员和领事的实际问题所提出的一些想法和要求,我认为这是基本的。它可能会刺激具有正式语言设计能力更多的人,而不是我挑选这些想法并做得比到目前为止更好。尽管本文描述性而不是正式,但我坚信这些想法值得写下。未来将表明它们是否落在富有成果的土壤上。
摘要。本文介绍了一种新型的人类机器人互动设置,用于机器人和人类对符号语言的学习,以识别机器人体内稳态需求。机器人和人类学会使用并响应分别传达体内稳态需求和满足体内稳态需求的刺激的相同语言符号。我们采用了差异结果培训(DOT)协议,该协议可以针对其内部需求提供特定的反馈(例如“饥饿”)当通过正确的刺激满足时(例如cookie)。我们发现了DOT可以提高人类的学习效率的证据,这反过来又可以更有效的机器人语言获取。研究中使用的机器人的词汇类似于语言“ babling”阶段中人类婴儿的词汇。机器人软件体系结构建立在一种模型上,用于情感的语言获取,该机器人通过与人的互动将词汇与内部需求(饥饿,口渴,好奇心)相关联。本文介绍了使用交互式设置进行的初步试点研究的结果,该研究表明,与非点控制条件相比,机器人的语言采集在DOT条件下达到了更高的收敛率。此外,参与者报告了积极的情感经验,控制的感觉以及与机器人之间的联系。这种相互学习(教师学习)方法提供了促进与DOT的认知干预措施的潜在贡献(例如对于患有痴呆症患者)通过增加治疗依从性,这是由于人类通过扮演积极的教学角色而更多地从事培训任务。机器人语言获取的稳态动机基础有潜力有助于与机器人更加生态有效和社会(社交/培养)互动。