2023年2月16日,丹·帕特里克(Dan Patrick)荣誉副州长达德·菲兰(Dade Phelan),第88立法机关自由和机会的议长深深植根于我们大国的历史上。结果,今天的德克萨斯州是美国无可争议的经济引擎。我们的超过2万亿美元的经济是世界第九大。我们领导着国家的能源生产,出口和高科技出口。我们是财富500强总部的最高州,拥有310万个小型企业,五分之一的西班牙裔企业主,其中一个是该国十分之一的黑人企业主。我们领导国家的人口增长,去年再次获得比其他任何州的人口更多,总人口超过了3000万。自2015年以来,超过40%的增长是新生的德克萨斯人。是全国“最棘手的”状态,在这里出生的十分之一的人中有八个以上,留在这里。我们是11层研究所的所在地,以及排名最高的商业,工程,负担能力等大学。我们的高中毕业率是美国最高的。,多亏了美国一些最好的老师,我们拥有的蓝色ribbon学校比任何其他州都要多。最重要的是,我们领导着全国创造就业机会,去年增加了650,000多个工作岗位,并在整个工作中创下了创纪录的记录。实际上,今天的德克萨斯人比以往任何时候都多。通过更高的工资和无与伦比的机会使更多的得克萨斯人走上了繁荣之路。但不要误会,这笔钱不属于政府。我们强大的德克萨斯州经济产生了另一个记录 - 我们现在拥有我们州历史上最大的预算盈余。它属于纳税人。我们将使用该预算盈余来提供德克萨斯州历史上最大的财产税减免。我们将向学生,老师和学校投资,并授权父母确保我们的教育系统适合每个孩子。我们将投资于劳动力发展,奖励我们的社区大学的表现,并提高大学的卓越研究。我们将帮助建立更强大的家庭并照顾我们的脆弱性。我们将资助基础设施的改进,并继续吸引新的商业投资和经济机会。,我们将在维护自由并确保得克萨斯州人民的安全和保障的同时做更多的事情。我们将实现这些目标,因为我们生活在无限的可能性状态。一个鼓励德州人到达天堂及以后的州。得克萨斯州的孩子们可以获取所需的知识和工具,以成为未来的企业家,科学家和艺术家,这些企业家和艺术家将帮助塑造德克萨斯州的未来几代人。德克萨斯州,我们重视自由,安全和法治,以便每个人都可以在自己的家,工作场所和学校感到安全。今天,我们在立法会议的门槛上聚集,该会议将在未来几十年中改变德克萨斯人的生活。我们将建立在托付给我们的自由和机会的遗产的基础上,并创建一个得克萨斯州,所有德克萨斯人都可以绘制自己的命运。一起,我们将建立明天的德克萨斯州。
单单元 DRAM 错误率的不断上升促使 DRAM 制造商采用片上纠错编码 (ECC),该编码完全在 DRAM 芯片内运行,以提高工厂产量。片上 ECC 功能及其对 DRAM 可靠性的影响被视为商业机密,因此只有制造商才知道片上 ECC 如何改变外部可见的可靠性特性。因此,片上 ECC 阻碍了第三方 DRAM 客户(例如测试工程师、实验研究人员),他们通常根据这些特性设计、测试和验证系统。为了让第三方准确了解片上 ECC 在错误校正过程中如何转换 DRAM 错误模式,我们引入了比特精确 ECC 恢复 (BEER),这是一种无需硬件工具、无需有关 DRAM 芯片或片上 ECC 机制的先决知识或无需访问 ECC 元数据(例如错误综合征、奇偶校验信息)即可确定完整 DRAM 片上 ECC 功能(即其奇偶校验矩阵)的新方法。BEER 利用了关键洞察,即使用精心设计的测试模式非侵入式地诱导数据保留错误会揭示特定 ECC 功能所独有的行为。我们使用 BEER 来识别来自三大 DRAM 制造商的 80 个带有片上 ECC 的真实 LPDDR4 DRAM 芯片的 ECC 功能。我们评估了 BEER 在模拟中的正确性和在真实系统上的性能,以表明 BEER 在各种片上 ECC 功能中都是有效且实用的。为了证明 BEER 的价值,我们提出并讨论了第三方可以使用 BEER 来改进其设计和测试实践的几种方法。作为一个具体的例子,我们介绍并评估了 BEEP,这是第一种错误分析方法,它使用已知的片上 ECC 功能来恢复导致可观察的后校正错误的不可观察的原始位错误的数量和位精确位置。1. 简介动态随机存取存储器 (DRAM) 是各种计算平台上系统主存储器的主要选择,因为它相对于其他存储器技术具有优惠的每位成本。DRAM 制造商通过提高设备代之间的原始存储密度来保持竞争优势。不幸的是,这些改进很大程度上依赖于工艺技术的扩展,这会导致严重的可靠性问题,从而降低工厂产量。DRAM 制造商传统上使用行/列备用等制造后修复技术来减少产量损失 [51]。然而,现代 DRAM 芯片技术的不断扩展需要更强大的错误缓解机制才能保持可行性,因为在较小的工艺技术节点上,随机单比特错误越来越频繁 [39,76,89,99,109,119,120,124,127,129,133,160]。因此,DRAM 制造商已经开始使用片上纠错编码(片上 ECC),它可以悄悄地纠正单比特错误
可用的电池测试通道可能会部分解释为什么某些电池材料性能研究仅包含少数重复的数据。但是,与电解质配方,处理电极和电池组装相关的人体错误会导致电池性能变化。为了依靠结果,应最大程度地减少细胞间的可变性。Dechent等人的研究。10提出至少9个重复,以便能够使用一个参数来构建电池老化模型。系统的复杂性在很大程度上影响了提供可靠结果所需的重复数量,以使系统中的各种效果和反应分解。此外,主动学习和机器智能决策是o的,加上自动化,以形成“闭环”研究方法,在此之前,所有先前完成的步骤/实验都会为以下步骤提供信息,从而消除了古老的“试验和纠正”方法。2,11 - 13对于新的电池材料发现,闭环实验可以快速优化设计空间内的材料选择,发现比随机过程快的速度更快,并且经验更少。14在闭环方法中,高通量筛选使用自动化或半自动设置,以允许以高速率自动测量DE ned设计子空间。15高通量筛查的成功是显而易见的;杨等。16使用高通量光学测量值来识别三阵金属氧化物组成空间中的区域,其光学趋势不是简单的相混合物,而McCalla等人。17证明了一个工作 - 能够每周同时收集数百种X射线差异模式和电化学阻抗光谱光谱。在这项工作中,我们描述了在环境实验室环境中用于电解质配方,组装和循环的电解质配方,组装和循环的自动机器人设置。在环境气氛中工作比保持干燥的室的成本效率要高得多,该室有可能用电池材料允许环境氛围打开未铺设的电解质设计空间。我们的功能和容易修改的设置可以适应不同的系统(例如非水电器的非水解);可以在维护,调整或增强功能的同时轻松地集成硬件组件的添加或去除,以将Odacell描述为模块化设置。使用Odacell进行多种化学的可能性概括了其探索液体电解质的高研究潜力的适用性,由于庞大的设计空间,这仍然是对光学的挑战。13到达这一目标,这项工作的目标是(1)设计和构建具有电解质配方和分配能力的可效率的,模块化的电池组装和测试设置,(2)确定细胞对细胞之间的可变性以及在环境氛围中组装的单元系统的可变性,以及在环境中组装的细胞,并表明设置的实用性和性能,(3),(3)溶剂,即在全细胞结合中的水和二甲基亚氧化二甲基氧化二甲基。
可用的电池测试通道可能会部分解释为什么某些电池材料性能研究仅包含少数重复的数据。但是,与电解质配方,处理电极和电池组装相关的人体错误会导致电池性能变化。为了依靠结果,应最大程度地减少细胞间的可变性。Dechent等人的研究。10提出至少9个重复,以便能够使用一个参数来构建电池老化模型。系统的复杂性在很大程度上影响了提供可靠结果所需的重复数量,以使系统中的各种效果和反应分解。此外,主动学习和机器智能决策是o的,加上自动化,以形成“闭环”研究方法,在此之前,所有先前完成的步骤/实验都会为以下步骤提供信息,从而消除了古老的“试验和纠正”方法。2,11 - 13对于新的电池材料发现,闭环实验可以快速优化设计空间内的材料选择,发现比随机过程快的速度更快,并且经验更少。14在闭环方法中,高通量筛选使用自动化或半自动设置,以允许以高速率自动测量DE ned设计子空间。15高通量筛查的成功是显而易见的;杨等。16使用高通量光学测量来识别三阵金属氧化物组成空间中的区域,其光学趋势不是简单的相混合物,而McCalla等人。17证明了一个工作 - 能够每周同时收集数百种X射线差异模式和电化学阻抗光谱光谱。在这项工作中,我们描述了在环境实验室环境中用于电解质配方,组装和循环的电解质配方,组装和循环的自动机器人设置。在环境气氛中工作比保持干燥的室的成本效率要高得多,该室有可能用电池材料允许环境氛围打开未铺设的电解质设计空间。我们的功能和易于修改的设置可以适应不同的系统(例如非水电器的非水解);可以在维护,调整或增强功能的同时轻松地集成硬件组件的添加或去除,以将Odacell描述为模块化设置。使用Odacell进行多种化学的可能性概括了其探索液体电解质的高研究潜力的适用性,由于庞大的设计空间,这仍然是对光学的挑战。13到达这一目标,这项工作的目标是(1)设计和构建具有电解质配方和分配能力的可效率的,模块化的电池组装和测试设置,(2)确定细胞对细胞之间的可变性以及在环境氛围中组装的单元系统的可变性,以及在环境中组装的细胞,并表明设置的实用性和性能,(3),(3)溶剂,即在全细胞结合中的水和二甲基亚氧化二甲基氧化二甲基。
年轻的姐弟俩,伍尔顿圣玛丽教堂的教区居民。尼尔的 4S 同学、校长和教职员工代表以及室内合唱团出席了他的安魂弥撒。4S 的学生们分享了他们对这个温柔有礼的男孩的回忆,您可以在稍后阅读他们的想法。不久之后,许多在场的学生目睹了希尔斯堡惨案的惨状。一些男孩实际上在看台上,那里有许多人丧生,幸运的是,他们都没有受伤或死亡。至少有一个男孩早些时候从人群的最前面走出来,意识到自己能活下来真是幸运。弗朗西斯·麦卡利斯特,1972-78 年的学生,来自伦敦的消防员,失去了生命,我们向他的家人、父母和兄弟马克和迈克尔(也是他的前学生)表示衷心的慰问。伊恩·克拉克 (Ian Clarke) 去年才离开学校,转学到红衣主教希南学校 (Cardinal Heenan School),他曾为大约 10 人进行人工呼吸,被誉为英雄。这里还应该提到,玛格丽特·罗奇斯夫人 (Mrs Margaret Rodges) 是建立阿尔德海医院 (Alder Hey Hospital) 新丧亲咨询服务的团队之一。1988 年 8 月,学校里的每个人都震惊地得知查理·怀特塞德 (Charlie Whiteside) 去世的消息,他多年来一直是学校维护团队的成员。查理是出了名的健身狂热者,经常可以看到他在跑道上长时间刻苦训练。内维尔·马尔斯 (Neville Mars) 的父亲也去世了,我们向内维尔表示支持和同情。6B 班的学生阿德里安·福克纳 (Adrian Faulkner) 失去了母亲。弗朗西斯·西德 (Francis Seed) (1 年级) 的兄弟去世了。斯蒂芬·戴利 (Stephen Daly) (4 年级) 的家人失去了父亲,特伦斯·欧文 (Terence Owen) (6B 年级) 和尼古拉斯·普拉特 (Nicholas Platt) (1 年级) 的父亲也长期患病。大卫 (2 年级) 的母亲帕特里夏·奥康纳夫人也去世了。前学生亚当、西蒙和斯蒂芬·罗克斯堡的母亲也因长期患病而去世。虽然我们尽力提及影响我们社区的所有丧亲之痛,但我们也向因人性弱点而遗漏的任何家庭表示歉意。我们很遗憾听到雷·托马斯先生的妻子患病的消息,我们希望她早日康复。前教职员工爱德华·库珀先生于 1988 年被宣誓为修士。在去年的期刊中,由于一个简单的误会,综合评论没有承认保罗·冈诺利的重要贡献,我们向他表示歉意。在两名成员遭遇更严重的事故后,校长和理事会可能会审查教职员工足球队“海鸥”的继续存在。希钦先生因严重摔倒导致心脏受伤而长期缺席,而格莱斯先生则因锁骨骨折而被绑起来。有人认为他的队友给他的运动鞋抹了油,但经过重案组的调查,这已经打折了!乔·克尔温先生的妻子玛格丽特·克尔温女士于 9 月加入我们,她临时接替了希钦先生,我们很高兴在今年晚些时候欢迎希钦先生的回归。
过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。