摘要:我们研究的主题是基于机载激光扫描 (ALS) 得出的数字地形模型 (DTM)。本文基于常用的统计数据分析了 DTM 的垂直精度,即平均误差和标准差,假设误差呈正态 (高斯) 分布。还测试了另一种方法,即所谓的稳健方法 (Höhle, Höhle 2009),其中中位数代替平均误差,标准化中位数绝对偏差 (NMAD) 代替标准差。本文提出了一种基于拉普拉斯函数的替代方法来描述概率密度函数,其中提出了拉普拉斯函数的参数用于 DTM 误差估计。测试区域位于意大利伊斯普拉联合研究中心附近; 2005 年收集了覆盖测试区域的原始 ALS 数据,并对其进行了处理以生成 DTM。精度分析基于 DTM 与原始 ALS 数据和现场高度测量的比较。从 ALS 数据计算出的 DTM 误差分布明显不正常,证实了文献中报告的其他结果。高斯分布函数大大高估了垂直 DTM 误差;然而,稳健方法低估了它们。拉普拉斯函数与误差直方图的匹配度最高,从该函数得出的精度参数可以被视为 DTM 精度评估的替代方法。1.简介
摘要 - 快速充电站(FCSS)的电力计量计算器(EEM),是电动汽车(EV)行业的关键基础设施,并且是车辆到网格(V2G)技术的重要载体,是确保公平电能交易的基石。传统的现场验证方法受其高成本和低效率限制的限制,努力与FCS的全球快速扩张保持同步。在响应中,本文采用了数据驱动的方法,并提出了测量绩效比较(MPC)方法。通过利用电荷(SOC)作为介质的估计值,MPC建立了多个FCS的EEM表现的比较链。因此,启用了具有高效率的FCS的EEM错误的估计。此外,本文总结了估计结果的干扰因素,并建立了相应的误差模型和不确定性模型。另外,提出了FCSS中是否存在EEM性能缺陷的一种方法。最后,验证了MPC方法的可行性,结果表明,对于精度级别为2%的FCSS,判别精度超过95%。MPC为FCSS的EEM绩效提供了可行的方法,为公平而公正的电力交易市场奠定了基础。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验使用传统的伪距冗余实时误差分析获得了位置误差估计,并对其进行了地面实况分析。利用这些地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算出的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。这种动态范围误差模型有效地减少了观测到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
网格适应在CFD中至关重要,对于动态完善并优化计算网格,增强了捕获复杂流动特征的精度。基于度量的网格适应性,虽然在数学上健壮,但通常依赖于伴随解决方案来进行误差估计,这可以显着增加计算需求。为了应对这一挑战,这项研究旨在开发一种机器学习驱动的方法来改编CFD,从而消除了对计算强度密集的伴随解决方案的需求。在追求此目标时,我们采用集合模型和图形卷积网络(GCN)来预测在适应过程中每个单元格的局部误差估计器。我们的发现表明,GCNS胜过各向同性网格的集合模型,而两个模型在各向异性网格中产生相似的结果。这些结果表明,我们的机器学习驱动的方法消除了求解伴随方程的误差估计的需要,为在复杂的流动方案中为更有效的CFD模拟铺平了道路。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验对使用伪距冗余的传统实时误差分析获得的位置误差估计进行了地面实况分析。利用此地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。该动态范围误差模型有效地减少了观察到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
物理学中的关键任务之一是进行测量以确定系统的状态。通常,测量的目的是确定物理参数的值,但也可以提出更简单的问题,例如“系统处于状态 A 还是状态 B?”。在量子力学中,后一种类型的测量可以使用量子假设检验的框架进行研究和优化。在许多情况下,人们可以明确地在极限中找到最佳测量,即人们可以同时访问大量 n 个相同的系统副本,并估计 n 变大时的预期误差。有趣的是,误差估计涉及各种量子信息理论量,例如相对熵,从而赋予这些量操作意义。在本文中,我们考虑量子假设检验在量子多体系统和量子场论中的应用。我们回顾了一些必要的背景材料,并详细研究了想要区分的两种状态在参数上接近的情况。相关的误差估计涉及相对熵方差等量,为此我们证明了一个新的不等式。我们探索自旋链和二维共形场论的最优测量策略,重点研究区分子系统的简化密度矩阵。事实证明,最优策略在实践中实施起来有些麻烦,我们讨论了一种可能的替代策略及其相应的误差。
摘要本研究研究了粒状材料(例如沙子,砾石和工业粉末)范围内的分级熵和统计熵的概念。它提出了一种新型方法,该方法利用了自动非线性模型拟合,并使用参数误差估计和插值来分析粒度分布及其在这些材料中的固有随机性。这种方法的核心在于其在不同条件下预测颗粒材料的行为和特性的能力,这对于土木工程和材料科学等领域的进步至关重要。分级和统计熵理论的整合,以及复杂的非线性模型拟合和插值技术,构成了对颗粒材料进行全面分析的坚实基础。这可以更好地了解其复杂行为,从而增强了它们在科学和工程应用中的实际使用。采用这些先进的方法,表示预测的精度和数据利用效率在颗粒材料分析中的效率取得了重大进步。它突出了
幂律缩放是临界现象中的一个核心概念,在深度学习中很有用,其中手写数字示例的优化测试误差随着数据库大小的增加以幂律形式收敛到零。对于一个训练周期的快速决策,每个示例只向训练好的网络呈现一次,幂律指数随着隐藏层的数量而增加。对于最大的数据集,获得的测试误差估计接近大周期数的最新算法。幂律缩放有助于解决当前人工智能应用中的关键挑战,并有助于先验数据集大小估计以实现所需的测试精度。它为衡量训练复杂性和机器学习任务和算法的定量层次建立了基准。
I.在[1]中引入的分布式自适应信号融合(DASF)算法可用于以分离的方式解决广泛的空间滤波和信号融合问题,例如,无线传感器网络(WSN)。此类问题的示例包括基于广义特征值分解[3],规范相关性分析[4],[5],最小方差波束[6]等的最小平方英尺误差估计,判别分析[3]等。DASF算法旨在应对WSN的典型带宽或能量限制。WSN中的典型空间过滤或信号融合问题涉及根据网络中每个节点收集的传感器数据优化成本函数。与需要在融合中心汇总的每个节点的传感器数据相反,DASF算法要求节点在彼此之间仅共享压缩数据。然后将此数据用于在每次迭代时在节点中局部构建全局优化问题的压缩版本。结果,全球(集中)的任何求解器
目前,采用光学相干检测的传感器的图像校正框架试图估计数据中的相位误差(如由像差引起的误差),并同时重建数字增强图像。实际上,这些框架很难解释散斑的影响。为了解决这一问题,我们开发了一种称为相干即插即用伪影去除 (CPnP-AR) 的新型图像校正框架,它将神经网络去散斑器与基于物理的测量模型结合在一起。我们还开发了定量评估相对于多个最先进框架的性能所需的实验协议。结果表明,CPnP-AR 可以为各种物体生成更高质量的图像和更准确的相位误差估计,特别是无需进行与物体相关的参数调整。整体稳健性的提高是将这种新型图像校正框架应用于众多感兴趣的应用的关键一步。