摘要 ─ 提出了一种基于平面结构的嵌套互补开口环谐振器 (CSRR)。这项工作的主要目的是获得更高的品质因数 (Q 因子),同时将复介电常数的误差检测降至最低。传感器在 3.37GHz 谐振频率下工作,并通过 ANSYS HFSS 软件进行仿真。随后,在传感器上放置了多个被测材料 (MUT),制造并测试了设计的传感器。结果实现了 464 的高空载 Q 因子。理论、模拟和测量的误差检测参数结果具有很好的一致性,低于 13.2% 的实部介电常数和 2.3% 的损耗角正切。所提出的传感器在食品工业、生物传感和制药工业应用中非常有用。
我们建议基于量子误差检测的量子误差检测后的量子键发出(QKD)系统,该技术通过编码在量子中rep绕。在此类中继器中,量子误差校正技术用于纠缠蒸馏。通过开发一个分析性研究来研究此类量子中继器,我们表明,在QKD的背景下,使用误差检测而不是误差校正,基础代码的能力来筛选出检测到误差的案例通常更为有效。我们通过对系统的关键组件中的不同误差来源进行建模,以实现三分之二代码代码的技术。然后,我们详细研究了此类缺陷对QKD系统秘密密钥生成率的影响,以及如何使用纠缠交换和解码阶段中获得的信息来最大化速率。出于基准目的,我们在设置的不同组件中指定了可以获得正键率的不同组件中的最大允许错误率。
量子处理节点之间的光子互连可能是实现大规模量子计算机和网络的唯一方法。这样的架构中的瓶颈是隔离良好的量子记忆与飞行光子之间的界面。我们建立了高保真的纠缠在远程分离的被困的原子量子置量记忆之间,该记忆是由存储在其脉冲时机中的光子Qubits介导的。这种时间键编码消除了对极化误差的敏感性,实现了长途量子通信,并且可以扩展到具有两个以上状态的量子记忆。使用基于测量的误差检测过程并抑制由于原子后坐力引起的基本误差源,我们达到了97%的纠缠保真度,并表明超过99.9%的忠诚度是可行的。
量子随机访问存储器(QRAM)被认为是必不可少的计算单元,可以在量子信息处理中实现多名速度。建议的实现包括使用中性原子和超导电路来构建二进制树,但这些系统仍然需要证明基本组件。在这里,我们提出了一个与固态记忆集成的光子集成电路(PIC)结构,作为构造QRAM的可行平台。我们还提出了一种基于量子传送的替代方案,并将其扩展到量子网络的背景。这两个实现都意识到了两个关键的QRAM操作,(1)量子状态传输和(2)量子路由,并具有已证明的组件:电气调节器,一个Mach-Zehnder干涉仪(MZI)网络,以及与人工原子相连的基于自旋记忆的记忆和固定的纳米腔。我们的方法从基于光子先驱的内置误差检测中获得了好处。详细介绍了QRAM的效率和查询效果的理论分析表明,我们的建议为一般QRAM提供了可行的近期设计。
摘要 — 当量子程序在嘈杂的中型量子 (NISQ) 计算机上执行时,它们会受到硬件噪声的影响;因此,程序输出通常是错误的。为了减轻硬件噪声的不利影响,有必要了解硬件噪声对程序输出的影响,更重要的是,了解硬件噪声对量子程序内特定区域的影响。识别和优化对噪声更敏感的区域是扩展 NISQ 计算机功能的关键。为了实现这一目标,我们提出了 C HARTER ,这是一种新技术,用于精确定位量子程序中受硬件噪声影响最大、对程序输出影响最大的特定门和区域。使用 C HARTER 的方法,程序员可以精确了解其代码的不同组件如何影响输出,并优化这些组件,而无需在传统计算机上进行不可扩展的量子模拟。索引术语 — 量子计算、NISQ 计算、量子误差检测、量子误差缓解
量子随机访问存储器(QRAM)被认为是必不可少的计算单元,可以在量子信息处理中实现多名速度。建议的实现包括使用中性原子和超导电路来构建二进制树,但这些系统仍然需要证明基本组件。在这里,我们提出了一个与固态记忆集成的光子集成电路(PIC)结构,作为构造QRAM的可行平台。我们还提出了一种基于量子传送的替代方案,并将其扩展到量子网络的背景。这两个实现都意识到了两个关键的QRAM操作,(1)量子状态传输和(2)量子路由,并具有已证明的组件:电气调节器,一个Mach-Zehnder干涉仪(MZI)网络,以及与人工原子相连的基于自旋记忆的记忆和固定的纳米腔。我们的方法从基于光子先驱的内置误差检测中获得了好处。详细介绍了QRAM的效率和查询效果的理论分析表明,我们的建议为一般QRAM提供了可行的近期设计。
欧拉著名问题的 36 个官员问题的负解意味着不存在两个六阶正交拉丁方。我们证明,只要官员们相互纠缠,这个问题就有解,并构造出这种大小的正交量子拉丁方。结果,我们找到了一个长期难以捉摸的绝对最大纠缠态 AME(4,6) 的例子,它由四个子系统组成,每个子系统有六个级别,等效于一个大小为 36 的 2 酉矩阵,它可以最大化这个维度的所有二分酉门之间的纠缠能力,或者一个完美的张量,有四个指标,每个指标从一到六。这种特殊状态应该被称为黄金 AME 状态,因为黄金比率在它的元素中占有突出地位。这个结果使我们能够构造一个纯非加性六方量子误差检测码 ðð 3 ; 6 ; 2ÞÞ6,它饱和了单例边界并允许人们将六级状态编码为三重态。
摘要 - 基于二进制GOPPA代码的基于代码的密码学是一种有前途的解决方案,用于挫败基于量子计算的攻击。McEliece密码系统是一个基于代码的公钥密码系统,据信它可以抵抗量子攻击。实际上,它可以成功地升至2019年初的第二轮加密标准化竞赛。由于其非常大的钥匙尺寸,已经提出了二进制GOPPA代码的不同变体。然而,研究表明,可以通过注入故障来挫败此类代码,从而导致错误的输出。在这项工作中,我们提出了实施Mceliece密码系统中使用的不同复合场算术单元的反对措施。所提出的架构使用高架和量身定制的签名。我们将这些误差检测签名应用于McEliece密码系统,并执行轨道可编程的门阵列(FPGA)实现,以显示采用提出的方案的可行性。我们基于提议的方法的开销和性能退化,并显示其对受约束嵌入式系统的适用性。
IBM 研究部门长期以来一直支持行业对量子信息科学 (QIS) 的追求。早在 20 世纪 80 年代初,IBM 就赞助了一次具有开创性的会议,在会上,Richard Feynman 讨论了利用量子力学为新一代计算机提供动力的可能性。从那时起,IBM 的主要成就包括首次演示量子密钥分发 (Bennett, Smolin 1989)、首次在 NMR 系统中实现 Shor 因式分解算法 (Almaden, 2001),以及最近在可扩展的超导量子比特晶格中实现任意量子误差检测 (2015)。IBM 致力于推动采用量子纠错的容错量子计算,并为此积极与美国联邦政府合作。例如,TJ Watson 研究中心的 IBM 量子计算团队自 2010 年底以来一直致力于 IARPA 赞助的多量子比特相干操作计划,并将在有机会取得进一步进展时继续互补工作。在这里,我们介绍了一些关于量子信息科学现状、该领域的应用以及我们对行业角色的愿景的想法。
DFF触发器DMM数字万用表DMA直接内存访问DSP数字信号处理DSPI动态信号处理仪器DTMR分布式三模块冗余双CH。双通道DUT设备在测试ECC错误纠正代码下进行EDAC误差检测和校正EEE电气,电子,电子机械和机电EMAC设备监控器监控器监视器和控制EMIB多-DIE互连桥EPC EPC延长物理编码层ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ETIMERS ETIMER ETIMERS ETIMERS ETIMERS ETIMERS ETIMERS ETW Finite impulse response filter FMC FPGA Mezzanine Card FPGA Field Programmable Gate Array FPU Floating Point Unit FY Fiscal Year Gb Gigabit Gbps Gigabit per second GCR Galactic Cosmic Ray GEO geostationary equatorial orbit GIC Global Industry Classification GOMACTech Government Microcircuit Applications and Critical Technology Conference GPIO General purpose input/output GPIB General purpose interface bus GPU Graphics处理单元GR全球路线GRC NASA GLENN研究中心GSFC Goddard太空飞行中心双通道DUT设备在测试ECC错误纠正代码下进行EDAC误差检测和校正EEE电气,电子,电子机械和机电EMAC设备监控器监控器监视器和控制EMIB多-DIE互连桥EPC EPC延长物理编码层ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ESA ETIMERS ETIMER ETIMERS ETIMERS ETIMERS ETIMERS ETIMERS ETW Finite impulse response filter FMC FPGA Mezzanine Card FPGA Field Programmable Gate Array FPU Floating Point Unit FY Fiscal Year Gb Gigabit Gbps Gigabit per second GCR Galactic Cosmic Ray GEO geostationary equatorial orbit GIC Global Industry Classification GOMACTech Government Microcircuit Applications and Critical Technology Conference GPIO General purpose input/output GPIB General purpose interface bus GPU Graphics处理单元GR全球路线GRC NASA GLENN研究中心GSFC Goddard太空飞行中心