摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
我们调查了差异隐私中无偏见的高维平均估计器。我们考虑了差异的私有机制,其预期输出等于输入数据集的均值,对于从r d中的固定有限域K绘制的每个数据集。一种经典的私人平均估计方法是计算真实的均值,并添加无偏见但可能相关的高斯噪声。在本文的第一部分中,我们研究给定域K的高斯噪声机理可实现的最佳误差,当在某些p≥2中测量误差范围时。我们提供算法,以在适当的假设下计算给定k的高斯噪声的最佳协方差,并证明最佳误差的许多不错的几何特性。这些结果将来自域K的分解机制理论推广到对称和有限的(或等效地,对称的多面体)到任意界面的域。在本文的第二部分中,我们表明,高斯噪声机制在所有私人无偏见的平均估计机制中都在非常强烈的意义上达到了几乎最佳的误差。特别是,对于每个输入数据集,满足集中差异隐私的公正平均估计器至少与最佳高斯噪声机制一样多。我们将此结果扩展到局部差异隐私,并近似差异隐私,但是对于后者,对于数据集或相邻数据集,下限的误差较低的界限是必要的,则必须放松。
摘要:小麦(Triticum aestivum)在全球粮食安全中起着至关重要的作用。巴西的历史平均收益率低于潜在的潜力,而巴西的小麦产量的提高将要求对基本植物开发过程有透彻的了解,这可以使用基于过程的作物模拟模型来实现。这项研究的目的是校准和评估We Treck模型的性能,以模拟巴西亚热带和热带地区春季小麦品种的叶片出现。在四年(2021、2022、2023和2024)中进行了现场实验,分别在四个地点进行了13个小麦品种,分别在里奥格兰德·杜尔(Rio Grande do Sul)和一个在巴西南部和西南部的圣保罗州。每周使用haun尺度确定主骨上的叶子数,直到旗叶。使用了最初用于冬小麦开发的叶片外观的非线性WE触发模型。使用交叉验证方法在4月,5月和2021年6月在圣玛丽亚市使用交叉验证方法校准了该模型,模型评估与来自所有其他位置和播种日期的独立数据。We-Treck Leaf的出现模型在模拟具有不同发育周期(从超早期到晚期)的春季小麦品种中的霍恩阶段表现出色,在不同的环境(亚热带和热带热带)中生长,并具有不同的N敷料管理(时机和来源),其均无方面的误差范围从0.10到0.10落在0.71 cul上。
摇滚乐机制是机器人移动性的众所周知的设计,对于遍布坚固的地形的流浪者尤其有效。这项研究通过集成超声传感器,GPS模块和机械臂来提高自主性和多功能性,从而改善了传统的摇滚系统。该系统由Arduino Uno控制,并使用L298 2A电动机电路板由六个12V DC电动机提供动力,从而确保在充满挑战的环境中精确而可靠的运动。超声波传感器通过触发对象在50厘米以内时触发转弯来提供有效的障碍物检测。这是基于复杂AI的路径计划的更简单的选择。此外,GPS的集成增强了导航功能。机械臂允许与环境相互作用,从而实现了对象操纵和维修等任务。该项目旨在增强自主导航并改善基于传感器的障碍物,这是由实验方法的促进,包括在具有不同障碍距离的受控环境中使用超声波传感器测试漫游者的障碍物检测能力。在不同的地形上评估了流动站的导航,包括平坦的表面和不均匀的地形,以评估其移动性和稳定性。可选地,通过引导漫游者到达预定义的航位来测试GPS的精度,而在连续操作过程中监视功率效率以测量电池寿命和整体系统性能。结果表明。这项工作改善了在恶劣条件下的机器人自主权,并使用机械零件来减少农业,灾难响应机器人,自动矿业车辆,管道和基础设施检查,火山,深层洞穴和极端地形等领域的误差范围。
早在1946年,J。A. Wheeler提出了一个实验,以验证一对理论的预测,即在n灭nih灭时发出的两个量子,具有零相对角动量的正电子 - 电子对,彼此之间是正确的。该建议涉及对各种方位角上两个an灭光子散射的巧合测量。Pryce和Ward'以及Snyder,Pasternack和Hornbostel报告了详细的理论研究。 '当两个计数器彼此成直角时,预测的最大不对称比率是当相机的共同平面物与2个。85,以8 = 82'的散射角出现。bleuler和bradt4使用了两个末端窗口6-m计数器作为检测器,并观察到与该理论不一致的不对称比。尽管如此,与结果相关的误差范围是如此之大,以至于使理论和实验之间的详细比较变得相当不利。同时,汉娜(Hanna)进行了类似的实验,并进行了更多的E%CIENT计数器排列,发现观察到的不对称比率始终小于所预测的不对称比。因此,通过使用更多的E%CIENT探测器和更有利的条件来重新分配此问题,这似乎是非常需要的。最近开发的闪烁计数器已被证明是可靠且高度高的伽马射线检测器。随着这种提高的效率,大约是G-M计数器的十倍,重合计数率将增加一百倍。被使用。在我们的实验中,两个RCA 5819摄影管和两个蒽晶体1x1xs。用这些蒽晶体获得的歼灭辐射的效率为7%至8%,与计算值相比有利。几何布置在图中示意性1。正电子源Cu〜被Deuteron Bombard the激活在哥伦比亚回旋子的铜靶上。采用电镀方法将CU活性与其他
HSS.ID.A.1表示具有实际数字行(点图,直方图和盒子图)上的图的数据。HSS.ID.A.2使用适合数据分布形状的统计信息,以比较两个或更多不同的数据集的中心(中位,平均值)和差异(四分之一间范围,标准偏差)。HSS.ID.A.3解释在数据集的背景下形状,中心和传播的差异,这考虑了极端数据点(离群值)的可能影响。HSS.ID.B.5以两种方式汇总两个类别的分类数据。在数据上下文(包括关节,边际和条件相对频率)中解释相对频率。认识到数据中可能的关联和趋势。HSS.ID.B.6表示散点图上两个定量变量的数据,并描述变量如何相关。HSS.IC.A.1将统计数据理解为基于该人群的随机样本来推断人口参数的过程。HSS.IC.A.2决定指定的模型是否与给定数据生成过程(例如使用仿真)的结果一致。例如,一个模型说旋转硬币以0.5的概率向上掉下来。连续5个尾巴的结果会导致您质疑该模型吗?HSS.IC.B.3认识到样本调查,实验和观察性研究之间的目的和差异;说明随机化与每个关系的关系。HSS.IC.B.4使用样本调查中的数据来估计人口均值或比例;通过使用仿真模型进行随机采样来开发误差范围。HSS.IC.B.5使用随机实验中的数据比较两种治疗方法;使用模拟来决定参数之间的差异是否显着。HSS.IC.B.6根据数据评估报告。HSS.CP.A.1使用结果的特征(或类别)将事件描述为样本空间的子集(结果集),或者作为其他事件的工会,相交或协同(“或”,“,”和“,”,“不”)。理解/目标学生将理解: