先进空中机动 (AAM) 飞机需要感知系统,以便在城市、郊区、农村和区域环境中实现精确进近和着陆系统 (PALS)。目前批准用于自动进近和着陆的最先进的方法将难以用于支持 AAM 操作概念。但是,来自其他应用和低 TRL 研究的技术和系统使用视觉、红外、雷达和 GPS 方法为 AAM 飞机进近和着陆提供基线感知和传感要求。本文重点介绍基于视觉的 PAL,以演示闭环基线控制器,同时遵守联邦航空管理局的要求和规定。共面算法确定姿势估计,并将其输入到扩展卡尔曼滤波器中。将 IMU 与视觉相结合,为 GPS 拒绝的环境创建传感器融合导航解决方案。状态估计会导致下滑道和定位器误差计算,这对于设计和推导 AAM PALS 的制导律和控制律至关重要。 IMU 和视觉导航解决方案为 AAM PALS 提供了有希望的模拟结果,更高保真度的模拟将包括计算机图形渲染和特征对应。
图2。单倍型精度定义和分析在256个具有挑战性的医学相关基因座。a,hap-lot型误差计算为实际和预测的单倍型之间的序列差异。质量值(QV)是单倍型误差的类似phred的变换。b,序列差异(单倍型误差)和QV箱之间的近似对应关系。c,全数据库locityper的单倍分型精度(以填充圆圈为标记)和1公斤的调用分别设置为最多40 HPRC样品。单倍型失败过滤的单倍型以灰色显示。d,在多达40个HPRC样本中,保留的一个设置中的locityper精度(loo;带有白色圆圈)和相应的单倍型可用性(实际和最接近可用的单倍型之间的QV)。e,从1kgp的602 Illumina WGS三重奏处的Locityper一致性。f,准确性,在跨HPRC样品的LOO设置中被Locityper丢失 - 最佳可用QV和预先介绍的QV之间的差异。累积分数显示为浅蓝色。
背景:用于分析疾病扩散的最常用的数学模型是易感暴露感染的回收(SEIR)模型。此外,SEIR模型的动力学取决于几个因素,例如参数值。目标:本研究旨在比较两种优化方法,即遗传算法(GA)和粒子群优化(PSO),以估算SEIR模型参数值,例如感染,过渡,恢复和死亡率。方法:将GA和PSO算法与SEIR模型的估计参数值进行了比较。适应性值是根据累积阳性covid-19病例的实际数据与从seir covid-19模型解决方案的案例数据之间的误差计算得出的。此外,使用四阶Runge-kutta算法(RK-4)计算了CoVID-19模型的数值解,而实际数据是从印度尼西亚雅加达省正Covid-19 Case的累积数据集获得的。然后使用两个数据集比较每个算法的成功,即数据集1,代表COVID-19的扩展的初始间隔和数据集2,该间隔代表一个间隔,其中COVID-19 Case Case较高增加。结果:估计四个参数,即由于疾病引起的感染率,过渡率,恢复率和死亡率。在数据集1中,当值= 0.5时,GA方法的最小误差(即8.9%)发生,而PSO的数值误差为7.5%。在数据集2中,GA方法的最小误差,即31.21%,当时发生在= 0.5时,而PSO的数值误差为3.46%。结论:基于数据集1和2的参数估计结果,PSO比GA具有更好的拟合结果。这表明PSO对所提供的数据集更健壮,并且可以更好地适应Covid-19-19的流行病的趋势。关键字:遗传算法,粒子群优化,SEIR模型,COVID-19,参数估计。文章历史记录:2024年2月12日,2024年5月17日第一个决定,2024年6月20日接受,在线获得2024年6月28日