脂质纳米颗粒 (LNP) 已成为行业中占主导地位的药物输送技术,有望输送 RNA 来上调或下调任何目标蛋白质。LNP 大多通过物理化学靶向技术靶向特定细胞类型或器官,其中 LNP 的脂质组成经过调整以找到具有所需趋向性的混合物。本文研究了肺趋向性 LNP,其器官趋向性源于含有阳离子或可电离脂质,从而赋予正的 zeta 电位。令人惊讶的是,这些 LNP 被发现会诱发大量血栓形成。这种血栓形成出现在肺部和其他器官中,并且研究表明,先前存在的炎症会大大加剧这种血栓形成。这种凝血是由各种含有阳离子脂质的制剂引起的,包括 LNP 和非 LNP 纳米颗粒,甚至是由不具有永久阳离子电荷的肺趋向性可电离脂质引起的。该机制依赖于 LNP 与纤维蛋白原结合并改变其构象,进而激活血小板和凝血酶。基于这些机制,设计了多种解决方案,使带正电荷的 LNP 能够靶向肺部,同时改善血栓形成。这些发现说明了必须尽早研究物理化学靶向方法的风险,并在仔细了解生物机制的情况下重新设计。
前庭诱发肌源性电位 (VEMP) 通常用于评估前庭神经和耳石器官的两个部分 (1–5)。在成人中,可以通过气导或骨导刺激可靠地诱发 VEMP (6);然而,尚未发表评估儿童 VEMP 可靠性的类似研究。VEMP 是对高强度刺激作出反应而诱发的肌肉电位 (1)。颈部 VEMP (cVEMP) 是从收缩的胸锁乳突肌 (SCM) 同侧记录的短潜伏期抑制反应,可提供有关囊和下前庭神经功能的信息 (1)。眼部 VEMP (oVEMP) 是从下斜肌对侧记录的兴奋反应,可提供有关椭圆囊和上前庭神经功能的信息 (7)。
医源性起源的精神病表现在临床实践中很常见,在将症状归因于精神病疾病之前,必须排除有机和医源性原因。bupropion是一种用于治疗抑郁症和戒烟的非典型抗抑郁药,与罕见的精神病实例有关,尤其是在具有危险因素的患者中,例如使用物质使用,老年或头部创伤病史。本报告描述了一名52岁男性复发性抑郁症的案例,该男子在剂量增加到300毫克/天后发展了安非他酮引起的精神病发作。他表现出了迫害的妄想,尽管他没有精神病的史或促成因素。随着安非他酮的撤离和添加利培酮,患者的精神病症状在一周内得到解决。该报告介绍了自2010年以来的最新文献以及安非他酮多巴胺能作用,导致精神病的能力以及与此问题相关的危险因素的作用。尽管没有准则,但在某些情况下,抗精神病药(例如利培酮)有助于逆转该药物中断后的安非他酮诱发的精神病。
涉及大脑视觉区域的电刺激会产生被称为光幻视的人造光感知。这些视觉感知在先前涉及皮层内微模拟 (ICMS) 的研究中得到了广泛的研究,并成为开发盲人视觉假体的基础。尽管已经取得了进展,但在实施功能性 ICMS 进行视觉康复方面仍然存在许多挑战。对主枕叶进行经颅磁刺激 (TMS) 提供了一种非侵入性产生光幻视的替代方法。盲人面临的一个主要挑战是导航。在科学界,评估视觉假体辅助导航能力的方法一直被忽视。在本研究中,我们调查了唤起侧向光幻视以在计算机模拟的虚拟环境中导航的有效性。更重要的是,我们展示了虚拟环境和视觉假体的开发如何相互关联,使患者和研究人员都受益。使用两个 TMS 设备,将一对 40 毫米的 8 字形线圈放置在每个枕半球上,从而产生单侧光幻视感知。参与者的任务是使用外围设备根据存在光幻视的视觉半场进行一系列左转和右转。如果参与者能够准确地感知所有十个光幻视,则模拟目标能够前进并完全退出虚拟环境。我们的研究结果表明,参与者可以解释单侧光幻视,同时强调基于计算机的虚拟环境的集成以评估视觉假体在导航过程中的能力。
摘要 成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 核酸酶系统已经能够生成疾病模型并开发许多遗传和非遗传疾病的治疗方法。然而,大规模基因组重排的产生引发了人们对 CRISPR/Cas9 核酸酶方法临床应用的安全性担忧。在这些事件中,由于染色体截断而形成的微核和染色体桥可导致局限于一条或几条染色体的大规模基因组重排。这种被称为染色体碎裂的现象最初是在癌细胞中描述的,人们认为它是由有丝分裂过程中染色体分离缺陷或 DNA 双链断裂引起的。在这里,我们将讨论影响 CRISPR/Cas9 诱导的染色体碎裂(以下称为 CRISPR 碎裂)的因素及其结果、表征这些事件的工具以及将其最小化的策略。 关键词:基因组编辑; CRISPR/Cas9;染色体碎裂;基因治疗;基因毒性;微核;染色体不稳定性。
抽象目标。对音频的分类感知(CP)对于了解人脑认为尽管声学特性的广泛可变性是如何感知语音的至关重要。在这里,我们研究了反映语音CP的听觉神经活动的时空特征(即将语音原型与模棱两可的语音分开)。方法。我们记录了64次通道脑电图,因为听众沿声音连续体迅速分类元音。我们使用支持向量机分类器和稳定性选择来确定何时何地在大脑CP中通过对事件相关电位的源级分析在空间和时间上最好地解码。主要结果。我们发现早期(120毫秒)全脑数据解码语音类别(即原型与模棱两可的代币)的精度为95.16%(曲线下的面积为95.14%; F 1分95.00%)。在左半球(LH)和右半球(RH)响应上进行单独的分析表明,LH解码比RH更准确,更早(89.03%vs. 86.45%的精度; 140 ms vs. 200 ms)。稳定性(特征)选择确定了68个大脑区域中的13个兴趣区域(包括听觉皮层,上部回旋和下额回(IFG)],在刺激编码过程中显示出分类表示(0-260毫秒)。相比之下,有必要15个ROI(包括额叶 - 顶部区域,IFG,运动皮层)来描述以后的分类阶段(后来300-800毫秒),但这些区域与听众的分类听证会的强度高度相关(即意义。行为识别函数的斜率)。我们的数据驱动的多元模型表明,在语音处理的时间过程中,抽象类别出人意料地出现了早期(〜120毫秒),并由相对紧凑的额叶临时 - 直脑脑网络的参与来控制。
在现代植物育种中,基因组选择已成为选择仅部分表型的大型繁殖种群中的优质基因型的黄金标准。许多育种计划通常依赖于单核苷酸多态性(SNP)标记来捕获全基因组的选择候选数据。为此,具有中等至高标记密度的SNP阵列代表了一种强大且具有成本效益的工具,可从大规模繁殖群体中生成可重现,易于处理的高通量基因型数据。但是,SNP阵列容易出现导致等位基因呼叫失败的技术错误。为了克服这个问题,基于失败的SNP调用纯粹是技术性的,通常会估算失败的呼叫。但是,这忽略了失败调用的生物学原因,例如:缺失 - 越来越多的证据表明基因存在 - 缺失和其他类型的基因组结构变体可以在表型表达中发挥作用。由于缺失通常不与其弯曲的SNP不平衡,因此缺少SNP调用的排列可能会掩盖有价值的标记 - 性状关联。在这项研究中,我们使用四个参数和两个机器学习模型分析了为低油菜籽和玉米分析的数据集,并证明基因组预测中的等位基因调用失败对重要的农艺性状具有很高的预测。我们根据种群结构和连锁不平衡提出了两个统计管道,这使可能由生物学原因引起的失败SNP调用过滤。对于所检查的人群和特征,基于这些过滤的失败等位基因调用的预测准确性与基于标准SNP的预测具有竞争力,这是基因组预测方法中缺失数据的潜在价值的基础。SNP与所有失败的等位基因调用或过滤等位基因调用的组合并不能以基于基因组关系估计的冗余性而获得的基于SNP的预测的预测均超过预测。
方法/设计:在这项采用盲法评估结果的单中心、随机、平行组临床试验中,总共 78 名中风患者将被随机分配到 VR 组或对照组。所有患有上肢运动障碍的中风患者都将接受功能性磁共振成像 (fMRI)、脑电图 (EEG) 和临床评估测试。每个受试者将进行三次临床评估和 fMRI。主要结果是 Fugl-Meyer 上肢评估量表 (FMA-UE) 的表现变化。次要结果是功能独立性测量 (FIM)、Barthel 指数 (BI)、握力以及左半球和右半球同侧和对侧初级运动皮层 (M1) 血氧水平依赖 (BOLD) 效应的变化,使用静息状态 fMRI (rs-fMRI)、任务状态 fMRI (ts-fMRI) 和基线和第 4 周和第 8 周的 EEG 变化进行评估。
致癌作用最严重的标志性步骤是氧化应激,它会诱导细胞 DNA 损伤。虽然在正常情况下 ROS 是重要的第二信使,但在癌症等病理条件下,由于氧化还原酶表达不平衡,可能会发生氧化应激。最近的研究有确凿的证据,表明氧化应激和甲状腺癌之间存在基于甲状腺激素合成的相互依赖关系。事实上,抗氧化防御系统的减弱可能在甲状腺癌进展的几个步骤中发挥作用。根据之前进行的研究,未来针对酶 ROS 源的药物设计(作为单一药剂或组合药剂)必须进行测试。多酚具有调节甲状腺癌生物事件(包括抗氧化活性)的潜力。针对酶 ROS 源而不影响生理氧化还原状态可能是一个重要的目的。至于其他癌症模型中讨论过的天然化合物的潜在化学预防机制,多酚对甲状腺癌的影响尚无定论,而且很少得到证实。因此,需要进一步科学研究多酚对甲状腺癌的抗氧化作用的特点。本综述阐明了一些多酚与甲状腺癌细胞发育过程中氧化反应中的关键酶之间的关联。本综述给出了正常生理或病理环境下酶促 ROS 源作用和氧化还原信号传导的要点,并概述了目前可用的多酚衍生的 TPO、LOX、NOX、DUOX、Nrf2 和 LPO 调节剂。
我在此提交论文“一种应用于被动诱发情绪的脑电图信号的情绪预测回归方法”,该论文涵盖了情绪预测领域的脑电图研究。这篇论文是作为蒂尔堡大学硕士数据科学协会的一项作业而撰写的,该协会专注于商业,目的是为情绪预测领域做出贡献。尽管 COVID-19 大流行迫使我们适应新的工作方式,但这项研究是在极大的好奇心和愉悦中完成的。我对脑电图和情绪预测知之甚少,这项工作让我大大提高了我在这个主题上的专业知识。我很感谢我的导师 B. Nicenboim 的合作和指导。我更喜欢在探索不同的解决方案和挑战自己以实现某个目标时拥有很大的自由。B. Nicenboim 给了我这种自由,同时在我需要时总是准备好提供反馈或帮助,我对此心存感激。艾萨克·牛顿曾经说过:“如果我能看得更远,那只是因为我站在巨人的肩膀上。”通过挑战某些想法并质疑研究的某些方面,研究就有机会提高其质量。因此,我要感谢我的巨人 N. Chauhan 和 D. van den Corput 挑战我的想法并因此改进了我的论文。