本研究探索了多模态生理数据流的同步,特别是脑电图 (EEG) 与具有眼动追踪功能的虚拟现实 (VR) 耳机的集成。通过在完全沉浸式 VR 环境中实现基于混合稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 拼写器,展示了同步数据流的潜在用例。硬件延迟分析显示 EEG 和眼动追踪数据流之间的平均偏移为 36 毫秒,平均抖动为 5.76 毫秒。该研究进一步介绍了 VR 中脑机接口 (BCI) 拼写器的概念验证,展示了其在现实世界中的应用潜力。研究结果强调了将商业 EEG 和 VR 技术结合起来进行神经科学研究的可行性,并为在生态有效的 VR 环境中研究大脑活动开辟了新途径。未来的研究可以集中在改进同步方法和探索各种情况下的应用,例如学习和社交互动。
摘要:大多数运动障碍人士使用操纵杆来控制电动轮椅。然而,患有多发性硬化症或肌萎缩侧索硬化症的人可能需要其他方法来控制电动轮椅。本研究实施了基于脑电图 (EEG) 的脑机接口 (BCI) 系统和稳态视觉诱发电位 (SSVEP) 来操纵电动轮椅。在操作人机界面时,三种涉及实时虚拟刺激的 SSVEP 场景显示在显示器或混合现实 (MR) 护目镜上以产生 EEG 信号。使用典型相关分析 (CCA) 将 EEG 信号分类为相应的命令类,并使用信息传输速率 (ITR) 来确定效果。实验结果表明,由于 CCA 的分类准确率高,所提出的 SSVEP 刺激会产生 EEG 信号。这用于控制电动轮椅沿特定路径行驶。同步定位和地图绘制 (SLAM) 是本研究中用于轮椅系统的机器人操作软件 (ROS) 平台中可用的地图绘制方法。
我们展示了一个移动数据集,该数据集由 24 名参与者在执行两项脑机接口 (BCI) 任务时以四种不同的速度移动时从头皮和耳朵周围的脑电图 (EEG) 以及运动传感器获得。数据由放置在前额、左脚踝和右脚踝的 32 通道头皮脑电图、14 通道耳朵脑电图、4 通道眼电图和 9 通道惯性测量单元收集。记录条件如下:站立、慢走、快走和慢跑,速度分别为 0、0.8、1.6 和 2.0 m/s。对于每种速度,记录了两种不同的 BCI 范式,即事件相关电位和稳态视觉诱发电位。为了评估信号质量,在每种速度下对头皮和耳朵脑电图数据进行了定性和定量验证。我们相信该数据集将有助于在不同移动环境中的 BCI 分析大脑活动并定量评估性能,从而扩大实际 BCI 的使用。
事件相关电位 (ERP) 是一种由大脑的敏感性和认知引起的独特大脑活动模式,而 P300 则会引起认知功能的电位变化。由于 P300 波是跨多个大脑通道的认知反应,与特定时期内测量的脑电图 (EEG) 和异常刺激相关,因此需要合适的信号处理应用程序进行解释。此外,神经科学标准下的多步数据处理使得 P300 反射难以通过常用方法进行分析。因此,本研究提出了基于多脑通道 P300 峰值信号检测的脑波应用处理模型。本研究将 64 个通道 ERP 数据集应用于快速傅里叶变换 (FFT) 中的带通滤波器,具有特定的信号处理范围,同时应用 ERP 平均作为特征提取方法。此外,实验元数据通过机器学习方法决策树与滤波后的 P300 峰值信号一起应用于通道分类。实验结果表明,P300诱发电位在不同脑区具有准确的心理反映。
1. 医疗仪器:任何形式的医学成像;电生理仪器;诊断/监测仪器;手术/介入仪器。 2. 医学信号和医学图像处理:电生理信号处理(诱发电位、EEG、EMG、ECG 等)、体内医学图像处理。 3. 生理系统建模:心血管系统建模;肌肉骨骼建模;呼吸系统建模;生理建模的系统控制视角。 4. 生物医学工程数据科学:医院/临床层面的数字健康(AI/ML/IoT)应用 此外,候选人必须拥有工程或物理科学(生物医学、电气、仪器仪表、机械、计算、系统控制;物理、数学、统计学)的基本学位,具有人体系统和/或整个器官层面的研究背景,曾在生理系统/临床领域密切工作,未来有在人体系统/整个器官层面的研究计划。亚细胞、细胞和组织水平的研究工作将不予考虑。
脑冲程是一个灾难性事件,可能会损害人体的各种器官,包括视觉系统。视觉的电生理学是一种诊断技术,用于评估视觉系统的不同病理状况,主要是视觉途径和视网膜。电视图(ERG),电视学(EOG)和视觉诱发电位(VEP)在该领域通常使用电生理技术。Abdolalizadeh等。(2022)进行了一项研究,以研究使用ERG对毒药对患者的潜在影响。该研究包括20名参与者,由十名男性和十名女性组成,年龄在15至30岁之间。这些发现揭示了这些患者的视网膜变化,这些变化是通过测量ERG的振幅(特别是B波峰)诊断的[1]。同一研究小组还检查了使用EOG接受抗癫痫药物治疗的患者的视网膜色素上皮(RPE)。他们使用了同一组患者并观察到病理变化
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
脑电图 (EEG) 是一种非侵入性神经成像技术,用于通过放置在头皮上的电极记录大脑的电活动。记录的信号,即脑电图(缩写为 EEG),是皮质神经元群(沿皮质柱排列的锥体细胞)中同步突触活动的产物。每个电极位置的电压波动反映了活动电极和参考电极之间的差分测量值,该差分测量值被放大并记录为 EEG 轨迹。这些电变化可以以高时间分辨率捕获,从而为了解亚毫秒范围内大脑活动的时间过程提供了一个窗口。EEG 在临床环境中被证明特别有用,因为某些异常的大脑功能病例会引起相对一致的 EEG 模式,这些模式可以被检测到。定量 EEG (qEEG) 促进了此类应用,定量 EEG 是应用数学技术提取 EEG 轨迹的数值特征以支持信号解释。 EEG 轨迹是癫痫的典型测试,可用于识别睡眠问题、确定大脑是活着还是死亡,或探测某些意识障碍。视觉诱发电位已用于诊断多发性硬化症(一种导致脱髓鞘的疾病),听觉诱发电位可检测新生儿的听力异常。通过将信号锁定在响应或外部刺激上并对多次试验的信号取平均值,可以提取与引起它的感觉、运动或认知事件特定相关的神经活动。这种技术经常用于监测整个发育过程中的大脑成熟度、精神疾病以及检查行为和药物治疗后的神经变化的研究。在学术研究中,EEG 通过对信号取平均值以及最近的单次试验分析,已被广泛用于探索与认知处理相关的基本问题,包括注意力、情绪、记忆和决策的研究。由于便携性和低成本,EEG 越来越多地用于现实环境、社区和其他神经成像工具过于昂贵或后勤不切实际的环境。利用 EEG 的商业应用也在不断增加,使大脑监测可供公众使用。它与人工智能、虚拟和增强现实等其他技术的结合,为与数字和物理世界的互动创造了新的可能性。脑机接口 (BCI) 的进展表明,EEG 可用于控制假肢和通信设备、提供神经反馈训练和促进身体康复。
摘要:本文通过认知心理学实验探讨2D和VR电影剪辑技术之间的差异。我们招募了16名志愿者观看一系列不同显示模式和剪辑类型的实验材料。参与者观看时同时记录脑电图(EEG)。主观结果表明VR模式反映了更高的负荷分数,特别是在努力维度。不同的剪辑类型对主观沉浸感分数没有影响。VR模式引发更强的EEG能量,差异集中在枕叶、顶叶和中央区域。在此基础上,进行了视觉诱发电位(VEP)分析,结果表明VR模式引发了更大的空间注意,而2D模式的剪辑引发了更强的语义更新和主动理解。此外,我们发现虽然两种显示模式下不同剪辑类型的效果相似,但交叉轴剪辑比连续性剪辑引发了更大的认知违规,这可以为未来VR电影剪辑技术的发展提供科学的理论支持。