Cortinovis 3,Giulia Frascarelli 3,Laura Nanni 3,Elena Bitocchi 3,Valerio di Vittori 3,Leonardo Vincenzi 1,Filippo 4
摘要微生物组研究揭示了越来越多的影响我们健康的细菌基因。虽然CRISPR衍生的工具在编辑人类细胞中的疾病驱动基因方面取得了巨大成功,但我们目前缺乏为细菌靶标获得可比成功的工具。在这里,我们设计了一个噬菌体衍生的粒子,以传递基础编辑器并修改大肠杆菌定植的小鼠肠道。这是使用非复制性DNA有效载荷实现的,可以防止维持和传播有效载荷,同时允许编辑效率高达99.7%的目标细菌群体。β-内酰胺酶基因的编辑导致治疗后至少42天对小鼠肠道中编辑的细菌的维持稳定。通过直接在肠道中的细菌进行原位修饰,我们的方法为研究细菌基因的功能提供了新的途径,并提供了开发新型微生物组靶向疗法的机会。
CRISPR-Cas 基因组编辑技术的最新进展使得在农作物中进行定点诱变和精确基因替换成为可能。CRISPR-Cas9 和 CRISPR-Cas12a 是两种主要且应用广泛的基因组编辑系统。然而,当 CRISPR-Cas12a 编辑机制从转基因中表达时,一些染色体靶标在玉米和大豆等重要作物中的编辑频率较低。本文,我们报告了一种有效的方法,即通过粒子轰击将 Cas12a-gRNA 核糖核蛋白复合物 (RNP) 递送到优良玉米品种的未成熟玉米胚中,直接生成基因组编辑系。通过将 Cas12a RNP 基因枪递送到未成熟胚中,在再生过程中未经任何选择,获得了约 7% 频率的基因组编辑系。令人惊讶的是,当 Cas12a RNP 与 PMI 选择标记基因盒共同递送并用甘露糖选择诱导愈伤组织培养物时,基因编辑率平均提高到 60%,在某些实验中甚至高达 100%。我们还表明,使用活性更高的 Cas12a 突变体可提高更难处理的靶序列的编辑效率。本文描述的进展为玉米的遗传改良提供了有用的工具。
摘要:在大米中,半弱SM是最需要的特征之一,因为它促进了更好的产量和耐药性。Here, semi-dwarf rice lines lacking any residual transgene-DNA and o ff -target e ff ects were generated through CRISPR / Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants.结果表明吉布林林(GA 1和GA 4)水平降低,植物高度(28.72%)和叶叶长度,而所有其他特征保持不变。OSGA20OX2表达得到了高度抑制,突变体表现出降低的细胞长度,宽度,并通过外源性GA 3处理恢复其植物高度。野生型和纯合突变系(GXU43_9)的比较蛋白质组学分别显示了588种蛋白质的水平,分别是273个上调和315个下调的水平。鉴定出的差异表达的蛋白质(DEP)主要富含碳代谢和固定,糖酵解 /糖糖异生,光合作用和氧化磷酸化途径。与生长调节因素(GRF2,GRF7,GRF9,GRF9,GRF11和GRF11)和GA(Q8RZ73,Q8RZ73,Q9AS97,Q69197,Q69VG1,Q69VG1,Q8LNJ6,Q8LNJ6,q8lnj6,q8lnj6,qy8lnj6,qy8lnj6,q55,在突变系中,脱离应激抗应激的蛋白5(ASR5)和脱落酸受体(PYL5)上调。我们将CRISPR / CAS9与蛋白质组学筛选整合为快速评估CRISPR实验结果的最可靠策略。
木薯是世界上最重要的食物根农作物,为数百万撒哈拉以南非洲生计农民带来了卡路里。木薯叶和根含有毒性糖糖苷的含有毒性。消耗残留的氰基元,导致氰化物中的氰化物中毒,氰化物转化为体内的氰化物。需要蛋白木薯品种,以使其成为一种始终如一,可接受的食物和商业作物。近年来,CRISPR/CAS系统已被证明是基因功能研究和作物改进的最有效,最成功的基因组编辑工具。在这项研究中,我们使用crispr/cas9通过农业介导的转化进行了外显子3中MeCyp79d1基因的靶向诱变。矢量设计导致在选择下在湿霉素下再生的子叶阶段的体细胞胚胎敲除。回收了八个植物并进行基因分型。DNA测序分析表明,测试的假定转基因植物在MeCYP79D1基因座中携带突变,分别报告了PAM序列的上游和下游的缺失和取代。MECYP79D1线叶片中存在的Linamarin和进化的氰化物的水平降低了七倍。尽管如此,MeCYP79D1敲除并未完全消除Linamarin和Cyanide。我们的结果表明,CRISPR/CAS9介导的诱变是开发具有降低氰化物含量的木薯植物的替代方法。
通过靶向的随机诱变(TRM)工具定向所需基因座的进化(DE)是一种强大的方法,用于产生具有新颖或改进功能的遗传变异,尤其是在复杂的基因组中。基于TRM的DE涉及开发目标DNA序列的突变库,并筛选所需特性的变体。然而,很长一段时间以来,DE方法仅限于细菌和酵母菌。最近,基于CRISPR/CAS和DNA脱氨酶的工具可以避开持久的障碍,例如较长的寿命,小型图书馆大小和低突变率,以促进多细胞生物本机遗传环境的DE。不是很明显的,基于脱氨酶的基础编辑-TRM(BE-TRM)工具通过实现基础取代和对目标DNA序列的随机化来大大扩展了DE方案的范围和效率。BE-TRM工具为所需蛋白质的连续分子演化,代谢途径工程,创建所需基因座的突变库以发展新功能以及其他应用,例如预测赋予抗生素耐药性的突变体。此重新查看提供了有关DE的BE-TRM工具的最新进展,其在生物学中的应用以及未来的方向以进行进一步改进的更新。[BMB报告2024; 57(1):30-39]
CRISPR/Cas 技术近期已成为植物基因功能研究和作物改良的首选分子工具。小麦是一种全球重要的主粮作物,其基因组已被充分注释,使用基因组编辑技术(如 CRISPR/Cas)有很大空间改善其重要的农业性状。作为本研究的一部分,我们针对六倍体小麦 Triticum aestivum 中的三个不同基因:春季品种 Cadenza 中的 TaBAK1-2 以及冬季品种 Cezanne、Goncourt 和 Prevert 中的 Ta- eIF4E 和 Ta-eIF(iso)4E。已成功生成所有目标基因的携带 CRISPR/Cas 诱导的插入/缺失的原代转基因系。由于冬小麦品种通常不太适合遗传转化,本研究中介绍的冬小麦转化和基因组编辑的成功实验方法将引起研究该作物的研究界的兴趣。
摘要 基因筛选是基因组功能注释的有力工具。在多细胞生物中,允许在空间和时间上控制基因消除的方法极大地促进了基因功能的探究。在这里,我们描述了一个大规模转基因短向导 (sg) RNA 文库,用于以组成性或条件性方式有效地基于 CRISPR 破坏特定靶基因。该文库目前由 2600 多个质粒和 1700 个果蝇系组成,重点是靶向激酶、磷酸酶和转录因子,每个都在 Gal4/UAS 系统的控制下表达两个 sgRNA。我们表明,条件性 CRISPR 诱变在许多靶基因中都很有效,并且可以有效地用于各种体细胞组织以及生殖系。为了防止通常与过量 Cas9 蛋白相关的假象,我们开发了一系列新型 UAS-Cas9 转基因,这些转基因允许对 Cas9 表达进行微调,以实现高基因编辑活性,而不会产生可检测的毒性。功能测定以及基因组 sgRNA 靶位点的直接测序表明,绝大多数转基因 sgRNA 系可介导有效的基因破坏。此外,我们在所有后生动物中进行了迄今为止最大的完全转基因 CRISPR 筛选,这进一步证明了我们文库的高效率和准确性,并揭示了许多迄今为止尚未鉴定的发育必需基因。
摘要Rapeseed是全球重要性的作物,但有必要扩大可用于解决育种目标的遗传多样性。受基因组支持支持的辐射诱变有可能取代基因组敲除和拷贝数增加的基因组编辑,但是缺乏对放射治疗的分子结果的详细知识。为了解决这个问题,我们制作了一个基因组重新测序的1133 m 2一代菜籽植物的面板,并分析了大规模缺失,单核苷酸变体和小插入 - 影响基因开放式阅读框架的缺失变体。我们表明,高辐射剂量(2000 Gy)是耐受性的,γ辐射和快速中子辐射具有相似的影响,并且从某些植物的基因组中删除的片段被其兄弟姐妹遗传为其他副本,从而使基因剂量减少。与具有较大基因组的物种相关性,我们表明,也可以使用转录组重新测序来检测这些大规模影响。为了测试该方法的预测性改变油脂肪酸组成的效用,我们产生了bna.fae1的拷贝数减少和增加的线条,并确认了对灰烬酸含量的预期影响。我们检测并测试了预计将废除BNA.FAD2的21碱基缺失。a5,为此,我们确定了预测的种子油多不饱和脂肪酸含量的降低。我们对辐射诱变的分子作用的提高理解将是基因组学主导的方法,以更有效率地将新型遗传变异引入该作物的繁殖,并为预测其他作物提供了一个典范。
记录版本:该预印本的版本于 2024 年 2 月 24 日在 Scienti¦c Reports 上发布。已发布的版本请参阅 https://doi.org/10.1038/s41598-024-55088-4 。