通过同源重组 (HR) 控制植物基因组的改变仍然很难实现。我们之前开发了植物内基因打靶 (ipGT) 技术,该技术依赖于通过双链断裂同时激活目标基因座和切除目标载体。尽管使用 SpCas9 会导致拟南芥中的 ipGT 频率较低,但我们最近能够通过使用卵细胞特异性表达强效但适用范围较广的 SaCas9 核酸酶来提高效率。在这项研究中,我们现在测试了是否可以进一步改进 ipGT,方法是在染色体内 HR 效率增强的细胞中进行,或者使用 Cas12a,这是一种具有替代切割机制的不同类型的 CRISPR/Cas 核酸酶。我们之前可以证明植物具有三种 DNA ATPase 复合物,如果因突变而丢失,它们都会导致同源基因组重复不稳定性。由于这些蛋白质以独立途径发挥作用,我们在双突变体中测试了 ipGT,其中染色体内 HR 增强了 20 至 80 倍。然而,我们无法获得更高的 ipGT 频率,这表明基因靶向 (GT) 和染色体重复诱导 HR 的机制不同。然而,使用 LbCas12a,尽管非同源末端连接 (NHEJ) 诱导效率较低,但 GT 频率高于 SaCas9,表明 Cas12a 特别适合诱导 HR。由于 SaCas9 因其较长的富含 GC 的 PAM 序列而受到很大限制,因此使用富含 AT 的 PAM 的 LbCas12a 可以大大拓宽 ipGT 的范围,尤其是在靶向启动子和内含子等 CG 沙漠时。
摘要:高效的植物转化和组织培养方法对于植物的遗传工程和先进的分子育种至关重要,但在栽培的八倍体草莓 (Fragaria × ananassa) 中,这两种方法都尚未得到很好的建立。在本研究中,针对两个基因不同的草莓品种 Sweet Sensation VR Florida 127 (FL127) 和 Florida Brilliance (FB) 建立并优化了一种芽再生方法。从温室生长的植物中获得的尖端、节点和叶柄的匍匐茎段被用作外植体,用于比较芽再生率。'FL127' 在优化条件下显示出最高的芽再生频率,而'FB' 在相同培养基类型中对较低浓度的 N6-苄基腺苷 (BA) (0.01 mg/L) 的反应最佳。 'FL127' 和 'FB' 中体细胞胚从匍匐茎尖 (RT) 向芽再生的平均转化频率分别为 42.8% 和 56.9%。利用这些优化的组织培养条件,进行农杆菌介导的 CRISPR/Cas9 基因编辑,以检查品种 FL127 中八氢番茄红素去饱和酶 FaPDS 的转化和靶基因编辑效率。总共 234 个外植体接种了含有 Cas9-FaPDS 的农杆菌,导致愈伤组织诱导效率为 80.3%,其中 13.3% 的再生植物表现出部分或完全的白化表型。编辑子代的扩增子测序表明,所有 FaPDS 同源拷贝的向导 RNA (gRNA) 靶位点或侧翼区域均发生了突变(替换、插入和缺失)。我们的研究结果为草莓功能基因组学研究和基因编辑指导的品种改良提供了有效的组织培养和转化方法。