和循环寿命。但是,LIB遭受了李金属的易燃性,毒性,成本和稀缺性的问题。[4,5]基于水溶液和地球丰富元素的充电电池被认为是当前LIB的更可持续的替代品。水性金属离子电池本质上是安全的,环保的,便宜的,并且能够在大型电流下运行。[6–8]水锌离子电池(ZIB)是一种类型,具有高理论能力(820 mAh g-1)和金属锌的低电化学潜力(-0.76 v Vs标准氢气触发),[9-13],但[9-13],但对于ZIB的高度稳定的摩托模具仍是ZIB的高度稳定性。普鲁士蓝色类似物(PBA)具有X M [Fe(Cn)6] Y·N H 2 O(0 PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。 [18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。 [9,21,22] Liu等。 首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。 [24] Mantia等。 [30]PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。[18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。[9,21,22] Liu等。首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。[24] Mantia等。[30][23]合成了一个立方结构PBA(CUHCF)用于Zn 2 +存储,该阴极完成了100个循环,其容量为56 mAh g-1。表明,CuHCF中的容量衰减可以归因于相位转变为第二相,而该相位在电脑上的活性较小。[25,26]为了减少Zn 2 +插入产生的相变影响,研究人员采用了低甚至零Zn 2 +浓度的电解质,以使NIHCF // Zn,[27] Cuhcf // Zn,[28],[28],[28]和NAFE-PB // Zn [29] [29] [29] hybrid-ion-ion-ion-ion-ion-ion-ion-ion-ion。尽管如此,尽管这些阴极中的Zn 2 +的存储能力仍然很低,尽管通过增加扫描电压来改善周期寿命。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
描述了激光诱导的成核的贵金属及其合金纳米颗粒的合成。飞秒激光脉冲在MJ的顺序上具有能量的焦点,以在贵金属离子水溶液中产生10 14 W/cm 2或更多的强度。强烈的激光场产生了具有高度降低能力的溶剂化电子和氢自由基,从而通过减少贵族金属离子和颗粒通过成熟而导致成核。可以在没有任何还原剂的情况下执行这种激光诱导的成核法。过量的氯龙溶液的辐射导致形成稳定的金纳米颗粒胶体溶液,而没有任何表面活性剂。此外,即使这些金属在整体中不混溶,对不同贵金离子的混合溶液的辐照也形成了固体溶剂纳米颗粒。此外,激光诱导的成核使形成贵金属的Quinary固定合金纳米颗粒成为可能。通过使用RH – PD – PT固体纳米颗粒发现了合金纳米颗粒的上催化活性的机理,以颗粒内部的元素分布来讨论。
通过系统免疫学捕捉“基线” 疫苗用于预防感染或疾病,是历史上最有效的救命医疗干预措施之一 [1]。过去,疫苗设计很大程度上是经验性的。然而,这种方法迄今为止大多无法治疗艾滋病毒、结核分枝杆菌 (TB) 和疟原虫 (疟疾) 等复杂感染,以及癌症和其他非传染性疾病。这种失败的原因是缺乏对疫苗诱导保护的潜在机制(即免疫规则)的深入了解 [2,3]。最近的技术进步,包括高度多路复用的免疫分析和数据驱动的计算模型,提高了在全球范围内识别这些规则的前景。系统生物学在疫苗中的应用[或“系统疫苗学”(见词汇表)]涉及以全面和公正的多组学方式(“组学”)评估疫苗接种前后免疫系统的分子和细胞状态。然后,该研究用于开发数据驱动模型,以预测疫苗接种后病原体特异性免疫反应(例如抗原特异性抗体滴度);通过这些模型,我们的目标是确定与疫苗反应相关并可能影响疫苗反应的关键分子免疫参数。这种方法已经带来了新的见解。例如,疫苗接种后早期宿主反应与结果(例如抗体反应)之间的相关性提出了微生物组可能参与疫苗接种反应的假设。抗生素引起的微生物组变化会影响小鼠甚至人类对流感病毒疫苗接种的反应 [4-6]。这种公正的系统方法越来越多地应用于疫苗设计和测试 [7]。这也导致人们越来越认识到群体中个体之间许多免疫参数的广泛基线和反应变异性 [8]。鉴于普遍存在的群体异质性,预测哪些人会对某种疫苗产生反应是必要的。此外,了解接种疫苗前的免疫状态如何影响疫苗接种反应也很重要。最近人们认为,对于人类流感病毒、乙型肝炎病毒 (HBV) 和疟疾疫苗接种,这也是可能的 [9-14,41]。具体而言,目的是评估受试者接种疫苗前的免疫状态是否允许预测反应(即“基线预测结果”的概念)。
诱发性外阴痛 (PV) 的特征是局部慢性外阴疼痛。它与外阴反复发炎、肥大细胞 (MC) 积聚和神经元发芽的病史有关。然而,外阴炎症如何促进脊髓神经元发芽和基因表达适应,从而导致过敏和疼痛感的机制尚不清楚。在这里,我们发现与没有 PV 的女性 (n = 4) 相比,患有 PV 的女性 (n = 8) 的外阴组织以 MC 积聚和神经元发芽为特征。此外,我们在 PV 动物研究中观察到了这些变化。因此,我们发现反复的外阴酵母多糖炎症刺激会导致持久的机械和热外阴高敏性,这是由外阴神经元中 MC 的积累、神经元的发芽、疼痛通道 (TRPV1 和 TRPA1) 的过度表达以及脊髓/背根神经节 (DRG) (L6-S3) 中与神经可塑性、神经炎症和神经生长因子 (NGF) 相关的基因表达的长期增加所介导的。然而,在外阴炎症期间使用富马酸酮替芬 (KF) 稳定 MC 活性来调节 NGF 通路会减弱 NGF 和组胺的局部增加,以及脊髓中促炎细胞因子和 NGF 通路转录的升高。此外,炎症期间的 KF 治疗可调节外阴神经元中的 MC 积累、神经元过度支配和 TRPV1 和 TRPA1 通道的过度表达,从而防止外阴疼痛的发展。对炎症期间 NGF 通路的彻底检查表明,使用 NGF 非肽抑制剂 (Ro08-2750) 阻断 NGF 活性可调节与神经可塑性和脊髓 NGF 通路相关的基因的上调,以及调节神经元发芽和疼痛通道的过度表达,从而降低外阴过敏水平。另一方面,刺激外阴的 NGF 通路会促进神经元发芽、疼痛通道的过度表达以及与神经可塑性、神经炎症和脊髓 NGF 相关的基因表达增加,导致持久的外阴过敏。总之,我们的研究结果表明,炎症引起的外阴异常性疼痛是由外阴中的 MC 积累、神经元萌发和神经调节介导的。此外,慢性外阴疼痛可能涉及脊髓基因表达的长期适应,这可能在中枢敏化和疼痛维持中起着关键作用。令人惊讶的是,在炎症的关键时期调节 NGF 通路可通过调节前庭和脊髓中的神经元变化来防止外阴疼痛的发展,这表明 NGF 通路在 PV 发展中起着根本性的作用。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年2月19日发布。 https://doi.org/10.1101/2025.02.14.638267 doi:Biorxiv Preprint
淀粉样蛋白β(Aβ)斑块的靶向是治疗的主要原因之一,是阿尔茨海默氏病(AD)痴呆症的主要原因之一,一直是跨越数十年的努力。虽然某些抗体非常有前途,并且已经从临床试验中移出并进入诊所,但这些治疗中的大多数以脑血管损伤的形式显示出类似的不良反应,称为淀粉样蛋白相关的成像异常(ARIA)。两类芳香而对患者,家庭和处方医生来说是主要关注的,而ARIA-E则作为脑水肿呈现,而ARIA-H作为脑出血(微观和宏)。在临床前和临床试验中,已经观察到,ADAPOEε4的最大遗传危险因素也是抗Aβ免疫疗法诱导的ARIA的主要危险因素。apoeε4载体代表大量的AD患者,因此限制了这些疗法在AD人群中的广泛采用。在这篇综述中,我们详细介绍了三种假设的机制,apoEε4影响了ARIA风险:(1)降低脑血管完整性,(2)神经炎症和免疫失调的增加,以及(3)CAA水平升高。APOEε4对ARIA风险的影响很明显,但是,基本机制需要更多的研究。
图7肝脏类器官中的脂质代谢。(a)在未处理的条件下用DAPI(蓝色,核)和尼罗河红(红色,脂质液滴)染色的左图,肝脏器官,以及在胺碘酮(40μm)或乙醇(200 nm)24小时处理下。右图,荧光定量(n = 5)。(b)左图;肝癌与LDL-Bodipy(绿色)在未经治疗的情况下和甲伐他汀治疗后孵育。核用DAPI(蓝色)染色。右图,荧光定量(n = 7)。使用未配对的t检验评估统计显着性,其p值截止设置为p <0.05。*,p值<0.05; **,p值<0.01; ***,p值<0.001; NS,并不重要。
手性在确定供体受体分子中光诱导电子转移的自旋动力学中的作用仍然是一个悬而未决的问题。尽管在与底物结合的分子中已经证明了手性诱导的自旋选择性(CISS),但有关该过程是否影响分子本身中的自旋动力学的实验信息。在这里,我们使用时间分辨的电子顺磁共振光谱表明,CISS强烈影响分离的共价供体 - 手持桥接器(D-Bχ-A)分子的25种自旋动力学,D的选择性光添加了D之后是两个快速的,顺序的电子转移事件,从而产生了D•+ -b-a• - • - •-a•-a• -利用这种现象提供了使用手性分子构建块来控制量子信息应用中电子自旋状态的可能性。30
为此取得成功的是优化库的可用性,例如Abinit [8],Quantum Espresso [9],VASP [10],Berkleygw [11],Yambo [12],Triqs [13]和更多[14],并利用了一遍又一遍地开发复杂的代码。如果没有这样的公共代码,每个研究人员都必须自己实施该方法,从而与最有可能的次级最佳结果创造了许多冗余工作。因此,方法的广泛适用性是拥有可用的公共代码的广泛适用性,以及有关实施中最佳实践的有记录的知识。在相关材料的研究中,上面提到的基于AB-Initio的治疗方法包含许多重要特征。但是,来自电子相互作用的超导顺序以及在多体schrödinger方程的近似So中产生的远程相互作用的其他效果仅包括部分或根本不包括。这创造了对我们可以连接到这些开发的方法和代码的需求,并通过添加缺失的作品来表达现状。在计算凝结物理学中,从有效的低能描述开始,仅保留少数相关的频带,它已被证明有效。如何到达这样的折叠模型的过程构成了第一个障碍。随后,我们仍然必须求解一个模型,其中包括一些频段,并具有相互作用的相互作用。要解决此类问题,我们通常需要引入近似值,这应该得到很好的控制。库基于通用模型接口(参见对于一类宽类材料,我们可以使用缠扰性方法,例如随机相位近似(RPA),Parquet近似[15]和FRG [16,17]。前者仅包含特定的图形通道,而二线却是图形的,因此是扩展Ab-Initio机械的主要候选者;问题是,整个方程式,结合其所有依赖项的实施超出了我们目前的影响力。在本文中,我们提出了分歧1 - 开源,高性能(多节点CPU&Multi-gpu)C / C ++ / Python库(在[18]上可用),该库实现了FRG的不同口味[16,17]。第3节)和三个不同的计算后端:(i)网格frg [19,20],(ii)截断的unity frg(tu 2 frg)[21 - 23]和(iii)轨道空间n-patch frg [24 - 26]。每个中央方程都执行不同的近似值,从而产生不同的数值复杂性,如附录d所述。本文被设计为动手介绍分歧的使用。因此,我们将FRG简要概括为第2节中的数值方法,介绍了第3节中的模型结构,解释了如何在第4节中求解流程方程以及如何在第5节中分析结果。