诺斯罗普·格鲁曼公司任务扩展飞行器 (MEV) RPO 成像仪在 GEO 上的性能 Matt Pyrak 诺斯罗普·格鲁曼空间系统 约瑟夫·安德森 空间物流有限责任公司 摘要 本文将描述和说明由诺斯罗普·格鲁曼公司制造的空间物流有限责任公司任务扩展飞行器 (MEV) 使用的会合和近距操作 (RPO) 传感器的实际性能。MEV-1 于 2019 年发射,并于 2020 年 2 月与位于 GEO 墓地轨道上距离 GEO 约 300 公里的 Intelsat 901 卫星执行会合、近距操作和对接 (RPOD)。MEV-2 于 2020 年发射,并于 2021 年 2 月和 3 月与直接在地球静止轨道上的 Intelsat 10-02 卫星执行了类似的 RPOD 序列。这些飞行器使用三种不同的传感现象来提供所有必要的相对导航数据,以实现上述 RPOD 功能。这些包括可见光谱成像仪(窄视场和宽视场)、长波红外 (LWIR) 成像仪(窄视场和宽视场)和主动扫描激光雷达。本文将探讨这些传感器在 GEO 实际任务中的性能及其对未来空间态势感知能力的潜在影响。1. 简介 Space Logistics LLC 任务延长飞行器 (MEV) 是其主承包商 Northrop Grumman Space Systems (NG) 和 NG 的几家传统公司十多年开发工作的成果。MEV 被认为是新卫星服务市场中的第一代能力,它为未设计为需要维修的航天器提供宝贵的寿命延长服务。MEV 基于 Northrop Grumman 的传统 GEOStar 航天器平台构建,并采用了两项关键技术发展。第一个是准通用对接系统,它与目前在轨的大多数最初未设计为对接的 GEO 航天器兼容。第二,是整合了强大而灵活的 RPO 传感器套件,该套件由尖端硬件和软件组成,这些硬件和软件基于诺斯罗普·格鲁曼的传统 RPO 系统,包括 Cygnus 空间站补给飞行器。MEV 可延长未为在轨加油而建造的卫星的寿命。为了执行任务,MEV 与客户飞行器进行半自动会合,并使用大约 80% 的 GEO 卫星上存在的两个功能与其对接,这两个功能是面向天顶的液体远地点发动机 (LAE) 喷嘴和周围的发射适配器环。对接后,客户飞行器的推进系统和姿态控制完全禁用,从而使 MEV 能够全权负责客户飞行器的指向和轨道管理。虽然 MEV 对接系统无疑是艺术巧思的杰作,但本文将仅探讨 MEV RPO 传感器套件的性能,一组抗辐射尖端传感器,为 MEV 相对导航算法提供原始数据。这些包括可见光谱摄像机组、长波红外 (LWIR) 摄像机组和扫描激光雷达。RPO 传感器套件允许 MEV 从 50+km 处跟踪客户车辆,并在精确对接事件期间保持厘米级的相对位置。根据客户要求,MEV 和下一代车辆可以使用其传感能力从近距离对客户车辆进行多光谱检查,并通过激光雷达收集高密度 3D 检查扫描。但对这种能力最直观的展示来自 MEV-1 对接后发布的首批从 GEO 上方拍摄的在 GEO 带中处于活跃运行状态的航天器商业图像。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
社区始终是我们的核心,我们致力于保护和改善所有人的墓地。我们既是生命之地,也是死亡之地。我们制定了计划,使我们能够创造收入,保护墓地,同时坚守我们的价值观。考虑到这一切,我们制定了这项商业计划,使我们能够适应并为一个蓬勃发展的组织和受人喜爱的墓地创造一个可持续的未来。
我们的董事会负责领导和监督环境、社会和治理 (ESG) 问题和实践,并接收管理层就这些问题提交的报告。整个董事会定期接收委员会和管理层的报告,与我们整个企业的员工会面,并深入讨论可持续发展范围内的一系列问题。我们对强有力的企业责任和可持续性的承诺还体现在我们的年度激励薪酬计划中,即非财务 ESG 绩效指标。这些指标包括质量、客户满意度、参与度和包容性、运营效率、多样性、环境可持续性和安全性。
©2020 诺斯罗普·格鲁曼保留所有权利 DS-560-BOM-080420 eProc-14-0415 A330:2006-0016 2020 RM Graphics
©2020 Northrop Grumman 保留所有权利 DS-560-BOM-080420 eProc-14-0415 A330:2006-0016 2020 RM Graphics
Antares ® 是一种经过飞行验证的两级或三级运载火箭,旨在为中型有效载荷提供反应灵敏、经济高效和可靠的轨道接入。初始 Antares 任务展示了 Antares 运载火箭的性能和能力,可根据 NASA 的商业轨道运输服务 (COTS) 和商业补给服务 (CRS) 合同为国际空间站 (ISS) 提供商业补给。Antares 发射系统满足中型科学和商业任务的需求和任务成功标准。Antares 运载火箭具有以下特点:• 低风险设计:Antares 采用了来自全球领先供应商的经过飞行验证的组件,并利用了在其他 Northrop Grumman 运载火箭上成功采用的子系统设计。• 经过飞行验证的技术:Antares 第一级由双 RD-181 发动机提供动力。这些发动机借鉴了 NPO Energomash 液体发动机系列经过大量飞行验证的传统,可追溯到 1985 年 RD-170 发动机的首次飞行。Antares 第二级依靠成熟的 CASTOR ® 固体火箭发动机和模块化航空电子控制硬件 (MACH) 电子技术。• 中型发射服务差距:Antares 填补了中型轻型 Minotaur 运载火箭和更大的中型 OmegA 运载火箭之间的服务差距。Antares 用户指南介绍了 Antares 发射系统的基本元素以及可用的可选服务。此外,本文档还提供了一般车辆性能,定义了有效载荷容纳和环境,并概述了 Antares 任务集成过程。本 Antares 用户指南中包含的描述可让潜在客户熟悉 Antares 发射系统、功能和相关服务。所呈现的数据提供了 Antares 发射系统的当前功能和接口,目的是使潜在客户能够执行任务可行性权衡研究并完成初步任务设计。Antares 任务团队根据每个特定任务的要求和特点进行详细分析。
Antares ® 是一种经过飞行验证的两级或三级运载火箭,旨在为中型有效载荷提供反应灵敏、经济高效和可靠的轨道接入。初始 Antares 任务展示了 Antares 运载火箭的性能和能力,可根据 NASA 的商业轨道运输服务 (COTS) 和商业补给服务 (CRS) 合同为国际空间站 (ISS) 提供商业补给。Antares 发射系统满足中型科学和商业任务的需求和任务成功标准。Antares 运载火箭具有以下特点:• 低风险设计:Antares 采用了来自全球领先供应商的经过飞行验证的组件,并利用了在其他 Northrop Grumman 运载火箭上成功采用的子系统设计。• 经过飞行验证的技术:Antares 第一级由双 RD-181 发动机提供动力。这些发动机借鉴了 NPO Energomash 液体发动机系列经过大量飞行验证的传统,可追溯到 1985 年 RD-170 发动机的首次飞行。Antares 第二级依靠成熟的 CASTOR ® 固体火箭发动机和模块化航空电子控制硬件 (MACH) 电子技术。• 中型发射服务差距:Antares 填补了中型轻型 Minotaur 运载火箭和更大的中型 OmegA 运载火箭之间的服务差距。Antares 用户指南介绍了 Antares 发射系统的基本元素以及可用的可选服务。此外,本文档还提供了一般车辆性能,定义了有效载荷容纳和环境,并概述了 Antares 任务集成过程。本 Antares 用户指南中包含的描述可让潜在客户熟悉 Antares 发射系统、功能和相关服务。所呈现的数据提供了 Antares 发射系统的当前功能和接口,目的是使潜在客户能够执行任务可行性交易研究并完成初步任务设计。Antares 任务团队根据每个特定任务的要求和特点进行详细分析。