1. 将速度控制器连接到电机和接收器。不要连接电池。 2. 打开发射器并将油门杆移至全油门。 3. 连接电池:三音旋律声音 -(仅适用于 LiPO:)电池计数的蜂鸣序列 - 长蜂鸣 - 三音旋律 - 第一个编程参数的蜂鸣声(参见参数表)。如果没有发出确认信号,请检查接收器是否工作正常;或者为油门通道操作伺服反向。 4. 编程模式由八个可用参数的不断重复循环组成。这八个参数由不同的蜂鸣序列指示(参见参数表)。 5. 要选择特定参数,请在发出下一个参数的蜂鸣信号之前将油门杆移至停止位置。 6. 您现在位于设置菜单,您可以从最多三个设置中选择一个,具体取决于参数。各种设置也由不同的蜂鸣序列表示(参见设置表)。 7. 如果您想要更改设置,只需在听到蜂鸣声后向上移动油门杆即可进行相应设置。确认旋律表示已采用该设置。其他参数通过蜂鸣声指示并可选择。或者,您可以通过拔下电池退出编程模式。8. 选择参数 7 或 8 后,控制器将退出编程模式并在正常模式下工作。
1 苏黎世联邦理工学院理论物理学系,苏黎世 8093,瑞士 2 悉尼大学物理学院 ARC 工程量子系统卓越中心,悉尼,新南威尔士州 2006,澳大利亚 3 太平洋西北国家实验室,美国华盛顿州里奇兰 99354 4 华盛顿大学物理系,美国华盛顿州西雅图 98195 5 悉尼大学微软量子中心,悉尼,新南威尔士州 2006,澳大利亚 6 普渡大学 Birck 纳米技术中心,印第安纳州西拉斐特 47907,美国 7 普渡大学微软量子中心,印第安纳州西拉斐特 47907,美国 8 普渡大学物理与天文系,印第安纳州西拉斐特 47907,美国 9 普渡大学材料工程学院和电气与计算机工程学院,印第安纳州西拉斐特47907,美国 10 Microsoft Quantum,雷德蒙德,华盛顿州 98052,美国
全国湿疹学会是对受湿疹影响的每个人的英国慈善机构。我们帮助支持湿疹的人,提供信息和建议,我们通过我们的网站,社交媒体,竞选,出版物和支持护士支持的热线索服务提供信息和建议。我们还为湿疹患者提供了声音,提高了对疾病的认识,支持对新治疗的研究并为更好的医疗服务而进行运动。
自第一例 COVID-19 病例报告以来,已经过去了近 4 年。迄今为止,该疾病已感染近 6.5 亿人,夺走了 600 多万人的生命。该疾病深刻影响了世界的地缘政治、社会经济和公共卫生结构,并且仍在继续影响。人们很快意识到,有效的疫苗是解决这场灾难的唯一办法,在这场大流行开始后不到一年的时间里,几个研究小组就开发出了针对 SARS-CoV-2 的疫苗。2020 年 12 月开始的疫苗接种运动在数月内达到了前所未有的规模,在近两年内,全球已分发了超过 130 亿剂疫苗,68.5% 的世界人口至少接种了一剂 COVID-19 疫苗。COVID-19 疫苗已被证明是控制大流行的有效工具。但尽管 COVID-19 疫苗已被证明有效且安全,但它最初并没有
抽象准确的功率损失估计对于有效的电力系统操作和计划至关重要。传统方法依赖于假设,导致不准确。这项研究采用了多层馈送神经网络(MFNN)来开发一个模型,该模型估计电力线中的真实和反应性损失。负载流技术用于获得训练多种模型的变量。调整神经元数并比较其他模型的性能指标后,选择了所需的模型。使用MATPOPTOR对118个BUS IEEE测试网络进行建模。Levenberg-Marquardt反向传播算法对生成数据训练了该模型。结果表明,25-神经元模型表现最好,在1000个时期达到了最小平方误差(0.00047543)。相关系数显示20个神经元和25个神经元模型的值为0.9999。分析确定了25个基于训练的模型是预测功率损耗的最准确的模型。据观察,25-神经元模型以1000个时期的最高相关系数(0.99999)达到了最佳性能(0.99999)和最小平方误差(0.00047543)。这项研究证明了ANN在估计传输线中功率损失方面的有效性。推荐的25个基于基于Neuron的训练有素的模型提供了研究模型的最佳预测,从而提高了电力系统效率和计划。关键字:神经网络,神经元,负载流,Levenberg-Marquardt,Newton Raphson
HumRRO 与 ARI 签订了合同,由 OASD/P&R (AP) 赞助,制作了一本由美国心理学会 (APA) 商业出版的书,该书记录了计算机化自适应测试 (CAT) 的研究和开发,作为管理武装部队职业能力倾向测验 (ASVAB) 的一种手段,这是国防部 (DoD) 使用的人员选拔测试。CAT-ASVAB 计划始于 1979 年,并于 1992 年取得运营成果,当时 CAT-ASVAB 在运营测试和评估中有限使用。从那时起,CAT-ASVAB 已被批准取代传统的印刷版 ASVAB,从 1996 年开始在所有军事入口处理站 (MEP) 中使用。
高钾血症在克莫司治疗的肾移植受者中比用环孢菌素更频繁。进一步的证据证明了环孢菌素和他克莫司肾毒性之间的差异。肾词表盘移植。2004; 19(2):444-450。 4。 deppe ce,Heering PJ,Tinel H,Kinne-Saffran E,Grabensee B,Kinne RK。 环孢菌素A对MDCK细胞中的Na + /K( +)-ATPase,Na + /K + /2cl-共转运蛋白和H + /K( +)-ATPase的影响,以及两个亚型C7和C11。 Exp Nephrol。 1997; 5(6):471-480。 5。 Kamel KS,Ethier JH,Quaggin S等。 研究确定用环孢菌素治疗的肾脏移植受者中高钾血症的基础。 J Am Soc Nephrol。 1992; 2(8):1279-1284。 6。 HEREN P,Ivens K,Aker S,Grabensee B. FK506引起的远端管状酸中毒。 临床移植。 1998; 12(5):465-471。 7。 Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。 效果2004; 19(2):444-450。4。deppe ce,Heering PJ,Tinel H,Kinne-Saffran E,Grabensee B,Kinne RK。环孢菌素A对MDCK细胞中的Na + /K( +)-ATPase,Na + /K + /2cl-共转运蛋白和H + /K( +)-ATPase的影响,以及两个亚型C7和C11。Exp Nephrol。1997; 5(6):471-480。 5。 Kamel KS,Ethier JH,Quaggin S等。 研究确定用环孢菌素治疗的肾脏移植受者中高钾血症的基础。 J Am Soc Nephrol。 1992; 2(8):1279-1284。 6。 HEREN P,Ivens K,Aker S,Grabensee B. FK506引起的远端管状酸中毒。 临床移植。 1998; 12(5):465-471。 7。 Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。 效果1997; 5(6):471-480。5。Kamel KS,Ethier JH,Quaggin S等。 研究确定用环孢菌素治疗的肾脏移植受者中高钾血症的基础。 J Am Soc Nephrol。 1992; 2(8):1279-1284。 6。 HEREN P,Ivens K,Aker S,Grabensee B. FK506引起的远端管状酸中毒。 临床移植。 1998; 12(5):465-471。 7。 Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。 效果Kamel KS,Ethier JH,Quaggin S等。研究确定用环孢菌素治疗的肾脏移植受者中高钾血症的基础。J Am Soc Nephrol。1992; 2(8):1279-1284。 6。 HEREN P,Ivens K,Aker S,Grabensee B. FK506引起的远端管状酸中毒。 临床移植。 1998; 12(5):465-471。 7。 Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。 效果1992; 2(8):1279-1284。6。HEREN P,Ivens K,Aker S,Grabensee B. FK506引起的远端管状酸中毒。 临床移植。 1998; 12(5):465-471。 7。 Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。 效果HEREN P,Ivens K,Aker S,Grabensee B. FK506引起的远端管状酸中毒。临床移植。1998; 12(5):465-471。 7。 Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。 效果1998; 12(5):465-471。7。Bantle JP,Nath KA,Sutherland DE,Najarian JS,Ferris TF。效果
1 Nephrology service Center Hospital-Universitaire Clermont-Ferrand, Clermont-Ferrand, France, 2 Biostatistic unit, Clinical Research and Innovation Department, Clermont-Ferrand, Clermont-Ferrand, France, 3 nephrology, transplantation, dialysis and aphereses, Center-Universitaire Bordeaux, Bordeaux, France, 4 Pathology Service,法国波尔多大学医院医院中心,5个肾脏病学 - 渗透透析服务 - 肾脏 - 肾脏移植,大学医院中心Poitiers,法国POITIERS,法国Poitiers,6肾脏科服务,中心,医院户口鲁恩,Rouen,Rouen,Rouen,Rouen,France,7法国,8肾脏病和透析服务,法国Puy-en-velay,埃米尔·鲁克斯医院中心,9肾脏科服务中心医院医院 - 宇宙 - Universitaire Clermont-Ferrand,Clermont Auvergne University,Clermont-Ferrand,Clermont-Ferrance,Francance,Francance,10 EA 7453 Chelter,Chelter,Clermont-france,France
收到:2024年8月8日修订:2024年9月10日接受:08年10月8日发布:2024年10月30日摘要-3D打印使用计算机辅助设计和分层来创建三维对象。许多研究人员正在探索3D打印的不同材料。其中一种途径是由于其可生物降解性和更好的机械性能,用聚合物材料加强天然纤维。这项研究的主要目标是探索使用融合沉积建模(FDM)的香蕉纤维与聚乳酸(PLA)进行3D打印的使用。本文研究了天然纤维增强对机械特性的影响,此外,还研究了FDM过程变量(例如喷嘴尺寸,填充图案,层厚度和喷嘴温度)对机械性能的影响。为了确定这些过程因子的重要性,使用方差分析(ANOVA),并使用Taguchi L16来设计实验。在这项研究中,为了执行机械拉伸测试和弯曲测试,根据ASTM标准从香蕉纤维/PLA生物复合材料印刷样品。用0.8毫米喷嘴尺寸,立方填充图案,0.3毫米厚度(200°C)打印的项目显示弯曲强度,拉伸强度,拉伸模量和弯曲强度的最大值。在3D制造的复合测试样品中,3%的香蕉纤维组成显示最大模量为985 MPa,最大弯曲强度最大为151 MPa,最大32 MPa抗拉力强度和最大2452 MPA MPA弯曲模量。断裂表面的SEM显微照片显示界面粘结和纤维拉出。