摘要。目的。近年来,代码调制视觉诱发电位 (c-VEP) 已被视为能够提供非侵入式脑机接口 (BCI) 以实现可靠、高速通信的强大控制信号。它们在通信和控制方面的实用性反映在过去十年中相关文章的指数级增长中。本综述的目的是提供文献的全面概述,以了解自 c-VEP BCI 诞生 (1984 年) 至今 (2021 年) 以来的现有研究,并确定有希望的未来研究方向。方法。文献综述是根据系统评价和荟萃分析的首选报告项目 (PRISMA) 指南进行的。在评估期刊手稿、会议、书籍章节和非索引文档的资格后,共纳入 70 项研究。全面分析了基于 c-VEP 的 BCI 的主要特征和设计选择,包括刺激范式、信号处理、建模响应、应用等。主要结果。文献综述表明,最先进的基于 c-VEP 的 BCI 能够通过大量命令、高选择速度甚至无需校准来提供对系统的精确控制。总体而言,在实际设置中缺乏验证,尤其是针对残疾人群体的验证。未来的工作应侧重于开发应用于现实环境的自定进度的基于 c-VEP 的便携式 BCI,以利用 c-VEP 范式的独特优势。异步、无监督训练或代码优化等方面仍需要进一步研究和开发。意义。尽管基于 c-VEP 的 BCI 越来越受欢迎,但据我们所知,这是关于该主题的第一篇文献综述。除了联合讨论该领域的进展之外,还提出了一些未来的研究方向,以促进可靠的即插即用的基于 c-VEP 的 BCI 的开发。
鉴于心理药物多动症治疗的这些缺点,在过去的十年中,已经研究了非药物治疗的各种潜在替代方法,可以实现无需或副作用较少的ADHD治疗。除了心理治疗方法外,例如体育锻炼训练(Barudin-Carreiro等,2022; Montalva-Valenzuela等人,2022年; Seiffer等,2022),草药治疗,草药治疗(Sarris等人,2011年),以及Interverions Interventions Interventions Interventions Interventions Interventions Interventions vrive virtace virtace virtace virtace virtiv al。 Bashiri等人,2017年; Romero-Ayuso等人,2021年)和基于应用的心理教育(Selaskowski等,2022,2023b)。可能是最有争议的和有争议的替代多动症治疗方法,但仍然是神经反馈。这种疗法干预旨在改善大脑活动的自我调节,并在研究近50年中一直在研究(Arns等,2014)。一些研究人员得出结论神经反馈对ADHD症状的积极影响(例如,参见Moreno-García等人,2022年的系统评论,其他人更加怀疑(有关系统的综述和元分析,请参见Louthrenoo等人,参见Louthrenoo等人,2022年,2022年; Rahmani等; Rahmani等,20222)。因此,其功效尚不清楚。因此,仍然需要开发更有效的ADHD治疗方法,其副作用较少。
侵入性真菌感染每年在全球造成超过160万患者,由于抗真菌药物数量有限(偶氮,echinocandins和polyeners)以及抗真菌耐药性的出现,因此难以治疗。转录因子CRZ1是细胞应激反应和毒力的关键调节剂,是一个有吸引力的治疗靶标,因为该蛋白在人类细胞中不存在。在这里,我们使用了CRISPR-CAS9方法在两个抗Caspofungin的c临床分离株中产生同基因CRZ1Δ菌株。glabrata分析了该转录因子在非脊椎动物(Galleria mellonella)和脊椎动物(小鼠)念珠菌病模型中对eChinocandins,胁迫耐受性,生物膜的形成和致病性的敏感性的作用。在这些临床分离株中,CRZ1破坏恢复了体外和体内模型中echinocandins的敏感性,并影响其氧气应激反应,生物膜形成,细胞大小和致病性。这些结果强烈表明,考虑到抗真菌抗性的出现和可用的抗真菌药物数量少,CRZ1抑制剂可能在针对真菌感染的新型雌激素中起重要作用。
摘要 - 第一次,本文提出了一种新型的微波大脑刺激系统的设计,制造和测量结果,从而实现了矩形脉冲包裹的6.5-GHz波的有效探针聚焦。虽然文献中的召开 /关闭刺激系统采用低于0.5 GHz的低频,但拟议的系统采用6.5 GHz,可以实现更多的空间能量聚焦和中等水平的能量渗透深度。在拟议的系统中,ON / OFF调制的微波信号是由由电压控制的振荡器(VCO)和功率放大器(PA)组成的单个芯片生成的。VCO由当前源处的开关驱动,以生成高和低状态之间20 dB隔离的调制信号。用对称载荷包围的中心开放孔的探测器可以向大脑的低功率反射,并将其聚焦在1毫米2区域的方形孔径中。最后,证明了使用具有1 Hz重复脉冲信封的微波信号对体内小鼠大脑的20分钟刺激,而1%的占空比刺激使归一化的频率可达到0.2,而在没有刺激下,归一化的灯率在±0.05以内保持在±0.05之内。这表明所提出的大脑刺激系统可以实现单个海马神经元活性的巨大变化。
摘要:对于使用调制传递函数 (MTF) 的摄影测量系统的图像质量分析,比较了使用汉宁函数的边缘梯度分析 (EGA) 和光栅图案方法。从飞机上拍摄了人造边缘和光栅图案,并进行了分析以确定摄影测量系统的质量。使用微密度计扫描图片。为了与人造图案进行比较,检查了天然屋顶边缘。发现所有 MTF 测量值都具有良好的一致性。此外,从 MTF 曲线中找到的分辨率与从三条目标获得的分辨率非常吻合。通常,由于飞机运动,从飞行方向的图案获得的 MTF 曲线低于垂直于飞行方向的 MTF 曲线。研究并讨论了线性图像运动及其补偿的影响。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
深度灵敏度已被证明是由对象上下文(合理性)调节的。可能是具有驱动此效果的本身的相关性,而不是对象合理性。在这里,我们操纵对象的生物相关性(面部或非面),并测试了对象相关性是否影响行为敏感性和对深度位置的神经反应。在第一个实验中,我们以差异定义的面孔和非面向人类观察者,要求观察者在信号噪声和清晰(罚款)任务条件下判断目标的深度位置。在第二个实验中,我们同时测量了对深度的fmri和fMRI响应。我们发现,行为性能在刺激条件下变化,以至于直立的脸部的表现明显比倒立的面部和信噪比(SNR)任务中的随机形状差,但对于随机形状而言,与特征任务中的直立脸相比要差。fMRI反应的模式分析表明,在直立脸的深度判断中,梭形面部面积(FFA)的活性与其他两个刺激的深度判断截然不同,其响应(并且在很大程度上,V3的响应)在功能上与行为表现相关。我们推测FFA不仅参与了对象分析,而且还基于对刺激的行为相关性的更广泛的认识,对立体机制产生了相当大的影响。
测量依赖性量子密钥分布(MDI-QKD)是一种消除所有检测器侧通道的量子通信技术,尽管目前受到实施复杂性和较低的安全密钥速率的限制。在这里,我们以Gigahertz时钟速率引入了一种简单而紧凑的MDI-QKD系统设计,具有增强对激光弹力的弹性,因此可以在没有规格或相位反馈的情况下使用自由运行的半导体激光源。这是使用直接激光调制来实现的,仔细利用增益开关和注入锁定激光动力学来编码相位调节的时键位。我们的设计实现了可靠的关键速率,从而通过数量级来改善最高水平的状态,在54 dB频道损失时最多8 bps,在有限尺寸的机制下以30 dB的频道损失,在54 dB频道损失和2 kbps中提高了2 kbps。这种非常简单的MDI-QKD系统设计和原则证明证明了MDI-QKD是用于未来量子通信网络的实用,高性能的解决方案。
abtract目标:已对调制的低能红端激光的生物学作用进行了研究,以提高有关人类非常小的胚胎样干细胞(HVSEL)在再生医学中的潜在临床使用的改善水平。材料和方法:确认HVSEL干细胞存在于血小板富血浆(PRP)的血小板中存在于从国家卫生服务血液和输血(NHSBT)中获得的正常外周血的散布。结果:使用流式细胞术在谱系阴性(LIN-)室中的HV-SEL干细胞(Oct 3/4,SSEA4和CXCR4)中,使用流式细胞术在PRP中鉴定出HVSEL干细胞增殖。实验证实了PRP中HVSEL干细胞的存在,然后将其暴露于5 MW,670 nm红色激光的歌曲调制,通过光相结合调节至1 MW输出3分钟,并在调制和激光暴露时间中进行变化。然后,使用流式细胞仪重新评估所得激光暴露的HVSEL干细胞以进行细胞增殖。与对照组相比,暴露于激光光的那些HVSEL干细胞显示HVSEL干细胞增殖的增加。结论:这是针对调制激光的HVSEL干细胞增殖的第一个报告。