随着世界各地的第五代(5G)网络的引入,已经发布了几个MM波频段供商业用途。与第四代(4G)中使用的相比,这些频段提供更宽的带宽并增加空间重复使用。 此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。 所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。 特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。 光束可以通过控制单相移位来以电子方式进行电导。 这些系统的瓶颈是提供精确相移的困难。 因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。 文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。 被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。 相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。 在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。相比,这些频段提供更宽的带宽并增加空间重复使用。此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。光束可以通过控制单相移位来以电子方式进行电导。这些系统的瓶颈是提供精确相移的困难。因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。本文的其余部分如下组织。第二节描述了两个VM的架构。第三节分析了这两种设计。第四节对测量结果的评论,第五节总结了本文。
激光器现在是一项普遍的技术,具有许多熟悉的应用程序,包括沟通,材料处理,3D扫描,印刷,医疗应用等等。激光辐射的产生需要热力学平衡的不平衡,以至于只有高度不寻常的天体物理量表现象才能在自然界中产生激光[1]。所有其他激光均经过设计和使用。使用的目的是驱动军事愿望检测激光的意图。激光器的军事应用包括范围查找,目标名称,激光耀眼和导弹控制[2]。军方感兴趣的大多数激光是脉冲激光器。时间分辨率和高瞬时亮度使它们非常适合在范围检测器和目标标记等应用中在许多公里的范围内运行。已经开发出激光华纳接收器(LWRS)来检测这些激光器所带来的威胁[3] [4],并允许辐射的平台启动由感知的威胁确定的适当的对策。在过去的几年中,连续波(CW)可见的激光二极管的优势产生了更广泛的危害 - 所谓的激光指针。手持式可见激光器具有几个瓦的功率,可容纳几百美元,波长不断扩展。这些激光被证明是一种威胁,当他们接近降落时,它们朝向飞机,并有1500多个报道称,去年英国和美国令人眼花azz乱的飞行员。CW激光器是激光检测世界中的特定挑战。常规LWR在检测这些激光器方面表现不佳,因为它们依赖于使用脉冲激光器观察到的亮度的快速时间变化。Wang [5]将激光检测分为三类 - 相干识别,散射识别和频谱识别。这些是基于观察到的类别而不是区分特征。Benton [6]采用了基于歧视技术 - 成像,光谱和连贯性的分类方法。前两个类别本质上都是
摘要 本文介绍了一种用于植入式生物医学设备的超低压 (ULV) 高分辨率低功耗连续时间 delta-sigma 调制器。二阶单比特调制器采用前馈架构和新型全差分 ULV 放大器,在 0.4 V 电源下实现高信噪比加失真比 (SNDR) 和节能运行。该放大器采用栅极输入 AB 类输出拓扑和局部共模反馈 (CMFB) 环路,以实现大输出摆幅,从而减少谐波失真并降低功耗。采用强大的时钟发生器来确保调制器在 ± 10% 电源变化范围内的一致性能。该调制器采用 130 nm CMOS 技术制造,带有常规 VT 晶体管。测量结果表明,在 500 Hz 带宽内,在标称 0.4 V 电源下,该调制器实现了 75.5 dB SNDR,功耗为 6.6 µ W。在最近报道的用于植入式生物医学应用的 0.4 V 或以下电压下工作的 DSM 中,所实现的 SNDR 是最好的。即使在 0.32 V 电源下工作,该调制器也能实现 69 dB SNDR,功耗为 3.7 µ W。关键词:连续时间、Delta-Sigma 调制器、生物医学设备、模拟数字转换器、超低压放大器、超低压电路分类:集成电路(存储器、逻辑、模拟、射频、传感器)
摘要 — 本文介绍了一种 28 nm CMOS 工艺的四阶 100 MHz 带宽连续时间 (CT) delta-sigma 调制器。介绍了一种初步采样和量化 (PSQ) 技术,该技术几乎可以充分利用量化时钟周期,从而在 0.65 过量环路延迟 (ELD) 系数下延长后端量化器 (QTZ) 的可用转换时间。使用 PSQ,后端 QTZ 的采样和量化分为粗采样和细采样两个步骤,类似于子范围架构以节省功耗。QTZ 以 2 GHz 运行,仅需 1.4 mW 功率即可实现 7 位 (1 b 纠错)。通过在前馈 (CIFF) 拓扑中的积分器级联中添加前馈 ELD 补偿路径,此设计中只需要一个数模转换器 (DAC)。该调制器的信号带宽为 100 MHz,信噪比 (SNDR) 为 72.6 dB,功耗仅为 16.3 mW(1.1 和 1.5 V 电源供电)。原型的动态范围为 76.3 dB,Schreier FoM 为 174.2 dB,有效面积为 0.019 mm 2 。
H-412 AOM 将来自相干光源的光聚焦到光学介质内的合适光束腰,该介质由低损耗、光学级二氧化碲晶体组成。光线按比例被引导到初级强衍射级,角度取决于所应用的 RF 源波形的频率。先进的相干换能器阵列技术与精确的数字驱动技术相结合,使 H-412 AOM 能够在 RF 相位调制模式或传统的开/关脉冲 RF 模式下运行,以延长开/关对比度,而光束指向稳定性并不重要。操作需要 L3Harris H-400 AOM 系列兼容驱动器和接口电缆。
H-411 AOM 将来自相干光源的光线聚焦到光学介质内的合适光束腰,该介质由低损耗、光学级二氧化碲晶体组成。光线按比例引导到初级强衍射级,角度取决于所应用的射频源波形的频率。先进的相干换能器阵列技术与精确的数字驱动技术相结合,使 H-411 AOM 可以在射频相位调制模式或传统的开/关脉冲射频模式下运行,以延长开/关对比度,而光束指向稳定性并不重要。操作需要 L3Harris H-400 系列兼容驱动器和接口电缆。
H-401 AOM 将来自相干光源的光线聚焦到光学介质内的合适光束腰,该介质由低损耗、紫外线级熔融石英组成。光线按比例引导到初级强衍射级,角度取决于所应用的 RF 源波形的频率。先进的相干换能器阵列技术与精确的数字驱动技术相结合,使 H-401 AOM 能够在 RF 相位调制模式下运行,或在传统的开/关脉冲 RF 模式下运行,以延长开/关对比度,其中光束指向稳定性并不重要。与 H-400 AOM 系列兼容的驱动器和接口电缆是与 H-401 AOM 一起使用所必需的。
L3Harris 型号 H-101 AOM 是一种高速布鲁斯特窗口设备。它旨在支持脉冲拾取和模式锁定应用,这些应用需要比提供类似调制能力的单晶设备更高的光功率处理能力。来自相干光源的光聚焦到光学介质内的光束腰,该介质由低损耗、紫外线级熔融石英组成。当通过合适的射频 (RF) 源引入声脉冲时,光按比例引导到初级强衍射级。RF 输入信号通过单晶压电换能器转换为等效行进声脉冲,该换能器在高真空下合金粘合到熔融石英基板上。
结合卓越的光耦合技术,该调制器可提供高噪声容限和出色的隔离模式瞬变免疫力。ACPL-C797 的最小绝缘距离 (DTI) 为 0.5 毫米,可提供可靠的增强绝缘和高工作绝缘电压,适用于故障安全设计。这种出色的隔离性能优于其他替代方案,包括基于电容或磁耦合且 DTI 在微米范围内的设备。采用拉伸 SO-8 (SSO-8) 封装,与传统电流传感器相比,隔离式 ADC 可提供可靠性、小尺寸、卓越隔离和过热性能,电机驱动设计人员需要以低得多的价格准确测量电流。