网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
最近的证据揭示了跨频耦合,尤其是相位振幅耦合(PAC)是大脑完成各种高级认知和感官功能的重要策略。但是,解码PAC仍然具有挑战性。此贡献提出了REPAC,这是一种可靠且可靠的算法,用于建模和检测EEG信号中的PAC事件。首先,我们解释了类似PAC的脑电图信号的合成,并特别注意了表征PAC的最批评参数,即SNR,调制指数,耦合持续时间。第二,详细介绍了REPAC。我们使用计算机模拟生成一组随机的PAC状EEG信号,并在基线方法方面测试REPAC的性能。depac被证明即使具有snr的现实值,例如-10 dB。它们都达到了99%的精度水平,但是REPAC从20位导致了剂量现场的显着改善。11%至65。21%,具有可比的特定山脉(约99%)。DEPAC也适用于真正的脑电图信号,显示了初步令人鼓舞的结果。索引项 - 相位振幅耦合,脑网作品,depac,调制,脑电图
实验物理学的科学进步不可避免地依赖于基础技术的不断进步。激光技术可以实现受控的相干和耗散原子光相互作用,而微光学技术则可以实现标准光学无法实现的多功能光学系统。本论文报告了这两项技术的重要进展,目标应用范围从里德堡态介导的量子模拟和光镊阵列中单个原子的计算到高电荷离子的高分辨率光谱。报告了激光技术的广泛进展:通过引入机械可调透镜支架,外腔二极管激光系统的长期稳定性和可维护性得到显著改善。开发了基于类似透镜支架的锥形放大器模块。二极管激光系统由数字控制器补充,用于稳定激光频率和强度。控制器提供高达 1.25 MHz 的带宽和由商业 STEMlab 平台设定的噪声性能。此外,还开发了针对强度稳定和 Pound-Drever-Hall 频率稳定进行优化的散粒噪声受限光电探测器以及用于 MHz 范围拍音的光纤探测器。通过分析用于波长为 780 nm 的 85 Rb 激光冷却的激光系统的性能,证明了所提出技术的能力。参考激光系统稳定到由调制传输光谱提供的光谱参考。分析该光谱方案以发现高调制指数下的最佳操作。使用紧凑且经济高效的模块产生合适的信号。实现了一种基于光学锁相环的激光偏移频率稳定方案。来自参考激光系统的所有频率锁定均提供 60 kHz(FWHM)的 Lorentzian 线宽以及 10 天内 130 kHz 峰峰值的长期稳定性。基于声光调制器与数字控制器相结合的强度稳定允许在微秒时间尺度上进行实时强度控制,并辅以响应时间为 150 纳秒的采样保持功能。对激光系统的光谱特性提出了很高的要求,以实现量子态的相干激发。在本论文中,通过引入一种用于二极管激光器的新型电流调制技术来增强主动频率稳定的性能。实现了从 DC 到 100 MHz 的平坦响应和低于 90 ◦ 的相位滞后,最高可达 25 MHz,从而扩展了可用于激光频率稳定的带宽。将该技术与快速比例微分控制器相结合,实现了两个激光场,相对相位噪声为 42 mrad rms,用于驱动铷基态跃迁。通过双光子方案进行相干里德堡激发的激光系统通过从 960 nm 倍频提供 780 nm 和 480 nm 的光。从单模光纤获得的 480 nm 输出功率为 0.6 W。两个激光系统的频率都稳定在高精细度参考腔中,导致 960 nm 处的线宽为 1.02 kHz(FWHM)。数值模拟量化了有限线宽对里德堡拉比振荡相干性的影响。开发了一种类似于 480 nm 里德堡系统的激光系统,用于高电荷铋的光谱分析。先进的光学技术也是微光学镊子阵列的核心,它提供了前所未有的系统尺寸可扩展性。通过使用优化的透镜系统与自动评估程序相结合,演示了具有数千个点且阱腰小于 1 µm 的镊子阵列。使用增材制造工艺生产的微透镜阵列实现了类似的性能。微透镜设计针对制造工艺进行了优化。此外,还分析了由于抑制谐振光导致的偶极阱散射率,证明了使用锥形放大器系统生成偶极阱的可行性。