我要衷心感谢所有为本论文项目做出贡献的人。这项研究工作是在里尔电气工程和电力电子实验室 (L2EP, Laboratoire d'Electrotechnique et d'Electronique de Puissance de Lille) 进行的。本论文得到了中国国家留学基金委员会 (CSC) 的资金支持,对此我深表感谢。首先,我要向 Bruno FRANCOIS 先生表示诚挚的谢意,他在这三年里指导了我的工作。我欣赏他对研究工作的态度、他耐心的宝贵指导以及他对研究领域的前瞻性观点。他不仅向我传授知识,还以他的专业精神和道德为榜样教会了我。我还要衷心感谢我的联合导师 Dhaker ABBES 先生,他总是为我提供建设性的建议和科学支持。在他的善良、鼓励和热情下,与他一起工作真的是一种荣幸。我很荣幸 Florence OSSART 女士和 Robin ROCHE 先生同意审阅这篇论文。他们的问题和意见对我准备论文答辩和改进论文非常有帮助。我还要感谢评审团主席 Luce BROTCORNE 女士和评审团成员:François VALLEE 先生、Jérôme BOSCHE 先生、Nouredine HADJSAID 先生和 Vincent DEBUSSCHERE 先生,他们在答辩期间对我的工作进行了深刻的评估。在这三年里,多亏了 L2EP 的同事们,我有机会在非常好的氛围中工作。我衷心感谢他们所有人的热情和在困难时期的倾听。我向闫星宇表示最诚挚的感谢,他在我研究工作的开始阶段以极大的耐心为我提供了无数的科学支持和指导。我要感谢 Xavier CIMETIERE、Kongseng BOUNVILAY、Loïc CHEVALLIER 和 Sylvie DEZODT 在我就读里尔经济学院期间给予我的善意和帮助。非常感谢 Haibo、Reda、Lorraine、Meryeme、Houssein、Emre、Ebrahim(还有其他很多人,我无法在此一一列出名字),感谢他们的鼓励以及我们在一起度过的所有美好时光。我要从心底向我的家人表达无限的感激。如果没有他们在我求学期间无条件的鼓励和支持,这一切都不可能实现。他们以身作则教我如何面对困难,以及只有努力工作才能取得好成绩。最后,我要感谢我的男朋友 Yuliang,他一直很理解、耐心和支持我;他给了我成功开展研究工作的力量;无论欢乐还是悲伤,他总是用他的爱和信任陪在我身边。
这项研究介绍了一个不可靠的随机工作店,随机工作。由于分析解决问题的某些复杂性,基于仿真的优化被这里采用。该问题是在企业动力学软件中建模的,并且使用Taguchi方法获得了决策变量的最佳值。这项研究有三个决策变量和两个目标。目标是MakePan和持有,短缺和维护成本的总和。这项研究努力获得调度规则的最佳价值,预防性维护时间和缓冲级,以最大程度地减少目标函数。通过数值问题和适当的调度规则,确定最佳预防性维护期和最佳缓冲区级别来评估所提出的方法。此模型可用于处理时间和失败的任何目标函数以及任何分布功能。这项研究的新颖性可能是考虑到失败的作业店,在动态条件和随机处理时间和失败时间以及随机的工作到达中。
进入21世纪以来,我国发展迅速,电动汽车作为汽油车的替代逐渐进入大众视野。目前,电动汽车换电问题正成为制约其发展的主要因素,新能源的合理开发与研究成为当务之急。微电网成为符合要求的合理产品。然而微电网系统并非十全十美,如今的换电站集充放电储能功能于一体,与微电网互动形成能量交换。然而,如今的微电网系统面临能源供需关系紧张、负荷不稳定等问题。如何协调微电网与电动汽车换电站两个运营主体的良好互动,保证各自的利益,最终实现节能减排、利于社会发展的目标具有很强的现实意义。
摘要由于批处理数据处理的无处不在,计划可延展的批处理任务的相关问题受到了极大的关注。我们考虑了一个基本模型,其中一组任务要在多个相同的机器上处理,并且每个任务均由值,一个工作负载,截止日期和并行性约束。在平行性界限内,分配给任务的机器数量会随着时间而变化而不会影响其工作负载。在本文中,我们确定了边界条件,并通过构造证明一组具有截止日期的可延展任务可以通过其截止日期来完成,并且仅当它满足边界条件时。该核心结果在调度算法的设计和分析中起关键作用:(i)考虑到几个典型的目标,例如社交福利最大化,机器最小化和最小化最大加权完成时间,以及(ii)当算法和动态编程等算法技术技术时,会适用于社交范围。结果,我们为上述问题提供了四种新的或改进的算法。
本文重点研究了基于模型预测控制 (MPC) 的智能微电网能源调度,该微电网配备不可控(即具有固定功率分布)和可控(即具有灵活和可编程操作)电器、光伏 (PV) 电池板和电池储能系统 (BESS)。所提出的控制策略旨在同时优化规划可控负载、共享资源(即储能系统充电/放电和可再生能源使用)以及与电网的能源交换。控制方案依赖于迭代有限时域在线优化,实施混合整数线性规划能源调度算法,以在随时间变化的能源价格下最大化太阳能自给率和/或最小化从电网购买能源的每日成本。在每个时间步骤中,解决由此产生的优化问题,提供可控负载的最佳运行、从电网购买/向电网出售的最佳能源量以及 BESS 的最佳充电/放电配置。
摘要 考虑到数据中心在世界各地的分布及其巨大的能源消耗,一些研究人员专注于任务调度和资源分配问题,以尽量减少数据中心的能源消耗。其他举措则侧重于实施绿色能源,以尽量减少化石燃料的消耗和二氧化碳排放。作为 ANR DATAZERO 项目 [ 34 ] 的一部分,一些研究团队旨在定义完全绿色数据中心的主要概念,该数据中心仅由可再生能源供电。为了实现这一目标,必须注重高效管理由太阳能电池板、风力涡轮机、电池和燃料电池系统组成的自主混合动力系统。这项工作的目的不是证明独立的数据中心在经济上可行,而是证明其可行性。本文提出了一组基于混合整数线性规划的模型,该模型能够管理能源承诺,以满足数据中心的电力需求。该方法在优化时会考虑季节和天气预报。
量子退火是一种有前途的方法,可用于解决资源受限项目调度问题 (RCPSP) 等复杂调度问题。本研究首次应用量子退火来解决 RCPSP,分析了 12 个众所周知的混合整数线性规划 (MILP) 公式,并将量子比特效率最高的公式转换为二次无约束二进制优化 (QUBO) 模型。然后,我们使用 D-wave advantage 6.3 量子退火器解决该模型,并将其性能与经典计算机求解器进行比较。我们的结果表明,该算法具有巨大的潜力,尤其是对于中小型实例。此外,我们引入了目标时间和 Atos Q 分数指标来评估量子退火和逆量子退火的有效性。本文还探讨了高级量子优化技术,例如定制退火计划,以增强我们对量子计算在运筹学中的理解和应用。
进入21世纪以来,我国发展迅速,电动汽车作为汽油车的替代逐渐进入大众的视野。目前,电动汽车换电问题正成为制约其发展的主要因素,新能源的合理开发与研究成为当务之急。微电网成为符合要求的合理产品。然而,微电网系统并非十全十美,如今的换电站集充放电储能功能于一体,与微电网互动形成能量交换。然而,如今的微电网系统面临能源供需关系紧张、负荷不稳定等问题。如何协调微电网与电动汽车换电站两个运营主体的良好互动,保证各自的利益,最终实现节能减排,利于社会发展的目标具有很强的现实意义。本文对电动汽车换电站与孤立微电网的经济调度策略进行研究。建立基于双层优化理论的经济调度模型,将换流站与孤立微电网作为两个独立的实体;基于多目标优化理论将两者整合为一个系统,研究孤立微电网的经济效益。
摘要 — 未来的量子互联网旨在通过共享端到端纠缠来实现任意远距离节点对之间的量子通信,端到端纠缠是许多量子应用的通用资源。与传统网络一样,量子网络也必须解决与路由和以足够速率满足服务相关的问题。我们在这里处理当必须通过基于第一代量子中继器或量子交换机的量子网络提供多种商品时的调度问题。为此,我们引入了一种新颖的离散时间代数模型,适用于任意网络拓扑,包括传输和内存丢失,并适应动态调度决策。我们的代数模型允许调度程序使用临时中间链路的存储来优化性能,具体取决于信息可用性,范围从集中式调度程序的完整全局信息到分布式调度程序的部分本地信息。作为一个说明性示例,我们将一个简单的贪婪调度策略与几个最大权重启发的调度策略进行比较,并说明通过网络为两对竞争客户端产生的可实现速率区域。
摘要 — 近年来深度学习 (DL) 模型的爆炸式增长使得人们迫切需要在 GPU 集群中对混合并行分布式深度学习训练 (DDLwMP) 进行高效的作业调度。本文提出了一种自适应最短剩余处理时间优先 (A-SRPT) 调度算法,这是一种新颖的预测辅助在线调度方法,旨在缓解与 DL 集群调度相关的挑战。通过将每个作业建模为与异构深度神经网络 (DNN) 模型及其相关的分布式训练配置相对应的图,A-SRPT 策略性地将作业分配给可用的 GPU,从而最大限度地减少服务器间的通信开销。观察到大多数 DDLwMP 作业会重复出现,A-SRPT 结合随机森林回归模型来预测训练迭代。至关重要的是,A-SRPT 将复杂的调度问题映射到单机实例中,该实例通过抢占式“最短剩余处理时间优先”策略得到最佳解决。该优化解决方案可作为 GPU 集群内实际作业调度的指南,从而实现理论上可证明的竞争性调度效率。我们进行了广泛的真实测试平台和模拟实验来验证我们提出的算法。