[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。
CRISPR/CAS9系统不仅是基因编辑的革命性工具,而且还调节各种原核和真核生物的基因转录。在近年来,源自CRISPR/CAS9的CRISPR-DCAS9系统已用于基因成像,高通量筛选,基因调节,研究基本基因功能和表观遗传调节等许多领域。在这篇综述中,描述了CRISPR-DCAS9在激活或抑制基因转录,降低靶向效率以及梳理SGRNA与转录调节之间的内在关系,在生命科学中的应用以及进一步升级的固有关系的最新进展。
图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
多囊卵巢综合征(PCOS)是育龄妇女中最常见的内分泌疾病。尽管其发病率很高并且被认为是无排卵性不孕的主要原因,但人们对该综合征的了解仍然很少,仍存在诊断不足和治疗不足的情况,导致女性患者治疗方案的研究进展缓慢。这种复杂疾病的异质性是遗传、环境、内分泌和行为因素共同作用的结果。它通常与卵巢增大和功能障碍、雄激素水平升高和胰岛素抵抗有关。目前,尚无单一病因可以完全解释 PCOS 的发病机制。大多数证据表明 PCOS 是一种复杂的多因素疾病,具有高度的遗传性。表观遗传学是指基因组和基因表达的可遗传变化,而 DNA 序列没有任何改变。表观遗传学包括DNA甲基化、组蛋白修饰(乙酰化、磷酸化、甲基化等)和非编码RNA(ncRNA)含量的改变。现有研究认为表观遗传学,特别是DNA甲基化在PCOS的发病机制中起着至关重要的作用。
Engl J Med,2013,368:107-16 [4] Jin SC,Benitez BA,Karch CM等。trem2中的编码变体增加了阿尔茨海默氏病的风险。Hum Mol Genet,2014,23:5838-46 [5] Schwabe T,Srinivasan K,Rhinn H.移动范式:小胶质细胞在阿尔茨海默氏病中的核心作用。Neurobiol Dis,2020,143:104962 [6] Zhang Y,Chen K,Sloan SA等。大脑皮层的神经胶质,神经元和血管细胞的RNA测序转录组和剪接数据库。J Neurosci,2014,34:11929-47 [7] Lloyd AF,Miron Ve。小胶质细胞在中枢神经系统中的促估计性特性。nat Rev Neurol,2019,15:447-58 [8] Butovsky O,Ziv Y,Schwartz A等。由IL-4或IFN-γ激活的小胶质细胞差异地诱导了成人茎/祖细胞的神经发生和寡构成。mol Cell Neurosci,2006,31:149-60 [9] Ulland TK,Song Wm,Huang SC等。TREM2在阿尔茨海默氏病中保持小胶质细胞代谢适应性。Cell,2017,170:649-63.E13 [10] Daws MR,Lanier LL,Seaman WE等。新型小鼠髓样DAP12-相关受体家族的克隆和表征。EUR J Immunol,2001,31:783-91 [11] Dean HB,Roberson ED,Song Y. Trem2中与神经退行性疾病相关的变体破坏了免疫球蛋白领域的顶端配体结合区域。前神经,2019,10:1252-67 [12] Sasaki A,Kakita A,Yoshida K等。小胶质细胞DAP12和TREM2基因在NASU-Hakola病中的可变表达。神经遗传学,2015,16:265-76 [13] Jay TR,Von Saucken VE,Landreth GE。trem2在神经退行性疾病中。mol Neurodegener,2017,12:56-89 [14] Forabosco P,Ramasamy A,Trabzuni D等。通过人脑基因表达数据网络分析对TREM2生物学的见解。Neurobiol老化,2013,34:2699-714 [15] Schlepckow K,Kleinberger G,Fukumori A等。与阿尔茨海默氏症相关的trem2变体发生在亚当裂解位点,并效果脱落和吞噬功能。embo mol Med,2017,9:1356-65 [16] Bouchon A,Dietrich J,ColonnaM。尖锐边缘:炎症反应可以由Trem-1触发,Trem-1是一种在中性粒细胞和单核细胞上表达的新型受体。J Immunol,2000,164:4991-5 [17] Del-Aguila JL,Benitez BA,Li Z等。 TREM2脑转录本特异性研究和TREM2突变载体。 mol Neurodegener,2019,14:18-31 [18] Lanier LL,Corliss BC,Wu J等。 带有基于酪氨酸的活化基序的免疫受体DAP12参与激活NK细胞。 自然,1998,391:703-7 [19] Thornton P,Sevalle J,Deery MJ等。 trem2在H157-S158键上通过裂解脱落,以加速阿尔茨海默氏病相关的H157Y变体。 Embo Mol Med,2017,9:1366-78 [20] Piccio L,Buonsanti C,Cella M等。 识别J Immunol,2000,164:4991-5 [17] Del-Aguila JL,Benitez BA,Li Z等。TREM2脑转录本特异性研究和TREM2突变载体。mol Neurodegener,2019,14:18-31 [18] Lanier LL,Corliss BC,Wu J等。带有基于酪氨酸的活化基序的免疫受体DAP12参与激活NK细胞。自然,1998,391:703-7 [19] Thornton P,Sevalle J,Deery MJ等。trem2在H157-S158键上通过裂解脱落,以加速阿尔茨海默氏病相关的H157Y变体。Embo Mol Med,2017,9:1366-78 [20] Piccio L,Buonsanti C,Cella M等。识别
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
题名 主要研究内容 神经系统记录与调控的新概念和早期研究 处于早期开发阶段的独特和创新型记录和 ( 或 ) 调控技术,包括处于概念化 初始阶段的新的和未经测试的想法。适用于多种记录方式,包括声学、 化学、电学、磁学和光学,以及遗传工具的使用等 在人脑中使用侵入性神经记录和刺激技术的探索 组建跨学科团队,开发侵入性神经记录与刺激技术,验证新技术原理、可 性研究 行性,并进行早期开发工作 优化用于神经系统记录和调控的仪器和设备技术 通过与最终用户的迭代测试来优化现有或新兴技术的应用程序。这些技术 和方法有望解决与细胞 ( 即神经元和非神经元 ) 和网络的记录与调控相关 的重大挑战,实现对中枢神经系统动态信号的变革性理解 神经系统记录和调控的新技术和新方法 开发极具创造性的方法,以解决在细胞分辨率或接近细胞分辨率水平记录 和调控 CNS 活动相关的重大挑战。可以是各类技术,如光学、磁学、 声学和 ( 或 ) 基因操作等 大脑行为量化与同步 支持能精确量化人类行为并将其与同时记录的大脑活动联系起来的下一代 平台和分析方法的开发和验证。用于分析行为的工具应该是多模态的, 并且应该能够与大脑活动相关联,因而能够准确、特异性、灵活地测量 和调控行为相关的大脑环路活动 在人脑中使用侵入性神经记录和刺激技术 使用先进、创新技术研究行为相关的动态神经环路功能的跨学科研究,旨 在通过系统地控制刺激和 ( 或 ) 行为,同时主动记录和 ( 或 ) 操纵神经活动 的相关动态模式,并通过测量由此产生的行为和 ( 或 ) 感知来了解中枢神 经系统相关环路的动态与功能 推进下一代人类中枢神经系统记录与调控侵入性 支持新型侵入式脑机接口治疗中枢神经系统疾病的临床试验,鼓励研究人 设备的临床研究 员开展转化活动和小型临床研究 人类中枢神经系统中新型记录和调控技术的临床 支持用于人类使用的下一代记录和 ( 或 ) 调控设备的开发,从概念验证到临 前概念验证 床前测试,以进一步了解人类中枢神经系统并治疗神经系统疾病 通过 Blueprint MedTech 将开创性技术从早期开发 鼓励转化新型神经技术,由美国 BRAIN 计划提供资助并由 NIH “蓝图医疗 转化为早期临床研究 科技”计划监督。鼓励学术和小企业合作开展非临床验证研究,鼓励支 持开发和转化开创性神经技术
EBV 病毒 (EBV) 感染了全球 90% 以上的人类,并通过在潜伏感染和裂解感染之间切换在宿主体内建立终身感染。EBV 潜伏期可在适当条件下重新激活,导致病毒裂解基因表达并产生感染性子代病毒。EBV 重新激活涉及各种因子和信号通路之间的串扰,随后复杂的病毒-宿主相互作用决定了 EBV 是否继续传播。然而,这些过程背后的详细机制仍不清楚。在这篇综述中,我们总结了调节 EBV 重新激活的关键因素及其相关机制。这包括立即早期 (IE) 基因的转录和转录后调控、病毒因子对病毒 DNA 复制和子代病毒产生的功能、病毒蛋白破坏和抑制宿主先天免疫反应的机制以及调节 EBV 重新激活的宿主因素。最后,我们探讨了新技术在研究 EBV 再激活中的潜在应用,为研究 EBV 再激活机制和开发抗 EBV 治疗策略提供了新的见解。
神经干细胞 (NSC) 是产生神经胶质细胞和神经元的祖细胞群,具有持久的自我更新和分化潜力。虽然胚胎神经系统中的一些神经祖细胞 (NP) 也寿命长且符合这一定义,但 NSC 一词传统上指成年个体中的此类祖细胞类型。随着在斑马鱼 (Danio rerio) 成年脑中发现大量 NSC 群及其高神经发生活性(包括神经元再生),这种模型生物已成为表征和机制分析 NSC 特性的有力工具。基于这些,本文将考虑成年斑马鱼脑中的 NSC,重点关注其最广泛表征的区域 - 端脑(特别是其背部 - 大脑皮层)。只要有必要,我们还会参考其他大脑分区、胚胎过程和成年小鼠的大脑,无论是为了比较的目的,还是因为这些其他系统中有更多信息可用。