在空间外观视野中,空间编码的SSVEP BCI在稳态视觉诱发对视觉闪烁刺激的反应的地形中利用了变化。与频率编码的SSVEP BCI相比,操作员不会注视任何闪烁的灯;因此,此范式可以减少视觉疲劳。其他优点包括高分类精度和简化的刺激设置。对范式的先前研究使用了固定持续时间的刺激间隔。对于频率编码的SSVEP BCIS,已经表明,动态调整试验持续时间可以提高系统的信息传输速率(ITR)。因此,我们研究了通过应用动态停止方法,是否可以为空间编码的BCI实现类似的增加。到此为止,我们引入了一个新的停止标准,该标准结合了分类结果的可能性及其在较大数据窗口中的性能。,BCI的平均ITR为28.4±6.4位/ min/ min,固定间隔,动态间隔将性能提高到81.1.1±44.4位/分钟。用户能够保持长达60分钟的连续操作的性能。我们建议动态响应时间可能是一种时间反馈,使操作员可以优化其大脑信号并补偿疲劳。
深度神经网络(DNN)一直处于机器学习(ML)和深度学习(DL)(DL)的最新突破的最前沿。dnns越来越多地用于各种任务,从对卫星图像的地球观察和分析到医学诊断和智能聊天机器人。在这些进步方面的主要贡献是培训数据,计算资源和框架的丰富性,可以在范式中有效地培训越来越多,更复杂的DNN,该范式被称为分布式DL,尤其是分布式培训,这是该博士学位的重点。在分布式培训中,数据和计算分布在几个工人中,而不是单主培训,其中数据和计算都驻留在单个工人上。在这种设置中,分布式培训可以帮助克服单主训练的局限性,例如内存限制,计算瓶颈和数据可用性。但是,分布式培训带来了许多需要仔细解决的挑战,以便具有有效利用它的系统。这些挑战包括但不限于工人中计算和数据的有效分布,Straggler工人在集群中的统计(与其他工人相比,在计算步骤中大大落后于工人),尤其是在同步执行的工作,以及工人之间的交流和同步。这意味着系统应在计算和数据维度上提供可伸缩性。另一方面,从编程和可用性的角度来看,使用分布式培训范式通常需要了解分布式计算原理和具有分布式和数据密集型计算框架的经验以及对单霍斯特培训使用的代码进行重大更改。此外,随着训练A DNN涉及几个步骤和阶段(例如,数据准备,超参数调整,模型培训等。),希望可以重复使用彼此不同步骤的计算结果(例如,在高参数调谐试验中学习的权重,以便改善训练时间,以便在高参数调整试验中学习的权重)。最后,当开发更大,更复杂的DNN时,我们还需要了解每个设计选择的贡献。本博士学位论文的贡献解决了上述挑战,并共同优化了大规模的DNN培训,使其更易于访问,高效和计算可持续性,同时又可以在ML/DL工作流中延长冗余,并为进行消水研究提供了有用的工具。