图 4.3:使用光学表面轮廓仪分析的实验性 RCF 轨迹轮廓 (a) 10 5 个周期的表面轨迹轮廓的 3D 视图 (b) 10 5 个周期的顶视图 (c) 不同的测试周期 ............................................................................................................................................................. 82
. : • 安全关键系统中广泛引用的与软件相关的事故涉及一台名为 Therac-25 的计算机化放射治疗机。1985 年 6 月至 1987 年 1 月之间,已知发生了六起事故,涉及 Therac-25 的大量过量用药 - 导致死亡和严重受伤。它们被描述为 35 年医疗加速器历史上最严重的一系列辐射事故。本文的信息取自公开文件,我们对过量用药所涉及的因素以及用户、制造商以及美国和加拿大政府处理这些事件的尝试进行了详细的事故调查。我们的目标是帮助其他人从这次经历中吸取教训,而不是批评设备制造商或任何其他人。所犯的错误并非该制造商独有,不幸的是,在其他安全关键系统中也相当常见。正如美国食品药品管理局 (FDA) 的弗兰克·休斯顿 (Frank Houston) 所说:“大量生命攸关系统的软件来自小公司,尤其是医疗设备行业;这些公司属于那些抵制或不了解系统安全或软件工程原则的公司。”2 此外,这些问题并不局限于医疗行业。人们仍然普遍认为,任何优秀的工程师都可以开发软件,无论他或她是否接受过最先进的软件工程程序培训。
一段时间以来,电子行业已经认识到静电放电 (ESD) 是潜在损坏源,尤其是对半导体器件而言。在此期间,人们一直在努力开发有意义的人体 ESD 脉冲和能够反复将不同电压水平的脉冲施加到半导体器件的设备。目的是确定部件承受特定电压水平的 ESD 脉冲的能力,并将该信息用作部件坚固性的指标。目前,可用设备能够施加在 MIL-STD 883C 等规范中经常描述的 ESD 脉冲作为人体脉冲;但这是正确的脉冲吗?最近的技术论文提出了一些关于 ESD 波形和捕获该波形的方法的有趣问题。IEC 801-2 等规范也导致了 ESD 波形的明显混乱,这些信息来源共同成为促进此项调查的催化剂。
摘要 —由于对快速应急通信响应和精确观测服务的需求呈爆炸式增长,机载通信网络 (ACN) 受到了业界和学术界的广泛关注。ACN 受异构网络的影响,这些网络旨在利用卫星、高空平台 (HAP) 和低空平台 (LAP) 构建通信接入平台。与地面无线网络相比,ACN 的特点是网络拓扑频繁变化且通信连接更脆弱。此外,ACN 需要无缝集成异构网络,以提高网络服务质量 (QoS)。因此,设计 ACN 的机制和协议带来了许多挑战。为了解决这些挑战,已经进行了广泛的研究。本期特刊的目的是传播 ACN 领域的贡献。为了介绍本期特刊的必要背景并提供该领域的总体概况,我们将介绍 ACN 的三个关键领域。具体来说,本文涵盖了基于 LAP 的通信网络、基于 HAP 的通信网络和集成 ACN。对于每个领域,本文都讨论了特定问题并回顾了主要机制。本文还指出了未来的研究方向和挑战。索引术语 — 机载通信网络 (ACN)、异构网络、基于低空平台的通信
5.海事海岸警卫局 (MCA)(负责向海外领土提供反污染建议)、国防部和外交及联邦事务部 (FCO) 商定了一项行动计划。双方同意,国防部将由打捞和海事作业团队代表对沉船进行现场调查。调查的目的是确定沉船的状况,评估船上剩余的石油量,并评估从沉船中清除任何剩余石油的可行性,并进一步确定未爆炸弹药造成的风险。
2009 年 2 月 25 日上午,TK1951,一架波音 737-800 被引导至航向道,在 AMS 2000 英尺处以 ILS 方式进近 18R 跑道,距离跑道入口不到 5.5 海里(海里)。这促使机组人员使用垂直速度模式从上方捕捉下滑道(这是必要的,因为在保持在 2000 英尺时需要近距离导航)。当时空中交通管制员的工作量不断增加,进近航段将在 TK1951 之后不久分割。副驾驶(F/O)是一名新聘用的 42 岁飞行员(拥有 4000 小时空军飞行经验),正在接受航线训练,担任飞行员飞行(PF)。已选择开启正确的自动驾驶仪(称为自动驾驶仪 B 或 CMD B),并且正确的飞行控制计算机(称为 FCC B)正在为其提供所有输入。当机组人员选择垂直速度模式并离开 2000 英尺时,737 的自动油门 (A/T) 减速至怠速,这与机组人员的期望(以及他们所知道的)他们对自动化的指令一致。接近新的襟翼设置时,飞机必须同时减速并下降,此时需要怠速功率。在接下来的 70 秒内,自动化系统的表现与机组人员的预期完全一致。然而,自动油门却以一种在这种情况下不正常的模式(所谓的减速闪光模式)自动且隐蔽地减速,但这是由于离开 2000 英尺后左侧雷达高度计 (RA) 和其他飞行参数的错误雷达高度读数触发的。驾驶舱内没有自动油门指示来唯一标记减速闪光模式。RA 异常没有报告给机组人员,驾驶舱内也没有故障标志、警告、灯光或任何其他直接通告。本质上,由于错误的雷达高度计输入,自动油门决定是时候降落了。它不再跟踪选定的速度,也不提供所谓的飞行包线保护。然而,自动驾驶仪仍然
计算机越来越多地被引入到安全关键系统中,因此也引发了事故。在安全关键系统中,一些最广泛引用的与软件相关的事故涉及一台名为 Therac-25 的计算机化放射治疗机。1985 年 6 月至 1987 年 1 月期间,已知发生了六起事故,涉及 Therac-25 的大量过量用药,导致死亡和严重受伤。它们被描述为 35 年医疗加速器历史上最严重的一系列辐射事故。’本文的信息取自公开文件,我们对过量用药的因素以及用户、制造商以及美国和加拿大政府为应对这些事件所做的努力进行了详细的事故调查。我们的目标是帮助其他人从这次经历中吸取教训,而不是批评设备制造商或任何其他人。所犯的错误并非该制造商独有,不幸的是,在其他安全关键系统中也相当常见。正如美国食品药品管理局 (FDA) 的 Frank Houston 所说,“大量生命关键系统的软件来自小公司,尤其是医疗器械行业的小公司;这些公司符合那些抵制或不了解系统安全或软件工程原则的人的特征。”此外,这些问题并不局限于医疗行业。人们仍然普遍认为,任何优秀的工程师都可以构建软件,无论他或她是否接受过最先进的软件工程程序培训。许多构建安全关键软件的公司没有从软件工程和安全工程的角度使用适当的程序。大多数事故都是系统事故;也就是说,它们源于各种组件和活动之间的复杂相互作用。将事故归咎于单一原因通常是一个严重的错误。在本文中,我们希望展示事故的复杂性,以及调查系统开发和运行的各个方面以了解发生了什么并防止未来发生事故的必要性。尽管可以从此类调查中学到一些东西,但对潜在责任的担忧