带有评论[PZ1]:也许从转录调节到重组的过渡更加顺利,您可以写出,这种“本地招聘”不仅导致了基因的转录,而且还会影响减数分裂的交叉形成
胰岛素是一种重要的激素,可控制体内大量过程 - 从血糖(血糖)调节到细胞生长。受损的胰岛素作用是2型糖尿病发展的主要因素,进而增加心血管疾病(例如心脏病发作或中风)的风险。但是胰岛素如何影响细胞中的许多不同过程?现已由DDZ的科学家与Max Planck分子遗传学研究所的研究人员和奥斯陆大学一起研究了这个问题。
摘要:我们在实验中证明了在Sili-ConNanodisk阵列中对连续体(A-BICS)中意外结合状态的调整。A-BIC出现了多物的破坏性干扰,这些干扰是平面电偶极子和平面磁性偶极子,以及弱电四极杆和磁性四极杆。我们进一步表明,可以通过改变纳米风险尺寸或晶格周期来方便地调节A-BIC的光谱和角度位置。非常明显,角度可以调节到0°,这表明A-BIC从OFF-γ-BIC到AT-γ-BIC进行了有趣的过渡。我们的工作为具有高质量因素的光捕获提供了一种新的策略,可调节的A-BIC可以在低阈值激光,增强的非线性光学和光学传感中找到潜在的应用。
自动控制 为了提供自动控制,系统进行了修改,如图 3 所示,以便机器、电子设备或计算机取代人为操作。添加了一种称为传感器的仪器,该仪器能够测量液位值并将其转换为比例信号 s。此信号作为输入提供给称为控制器的机器、电子电路或计算机。控制器执行人为功能,评估测量值并提供输出信号 u,以通过机械联动装置连接到阀门的执行器更改阀门设置。当自动控制应用于图 3 中的系统时,该系统旨在将某个变量的值调节到设定点,这称为过程控制。
谷轮涡旋数字压缩机能够将其容量从 10% 调节到 100%。压缩机随附一个外部电磁阀。这个“常闭”(断电)电磁阀是实现调节的关键部件。当电磁阀处于常闭位置时,压缩机以满负荷运行。当电磁阀通电时,两个涡旋元件轴向移开。在卸载状态下,压缩机电机继续运转,但由于涡旋分离,因此没有压缩。在“加载状态”下,压缩机提供 100% 的容量,而在“卸载状态”下,压缩机提供 0% 的容量。一个循环由“加载状态”和“卸载状态”组成。通过改变“加载状态”和“卸载状态”的时间,可以获得平均容量。例如,在 20 秒的周期内,如果“加载时间”为 15 秒,“卸载时间”为 5 秒,则平均容量为 75%。
PID与统治者相似。它可以告诉我们有多少天气或蒸气,但是我们必须用头来确定存在的确切气体或蒸气。接近未知化学释放时,PID设置为异丁基的校准气体。一旦通过标语,明显,Waybill或其他方式识别化学物质,就可以将PID敏感性调节到该化学物质上,以便其准确地读取。例如,如果我们用异丁基校准并碰巧测量1 ppm的甲苯泄漏,则PID将显示2 ppm,因为它对甲苯的敏感性是对异丁基的两倍。一旦我们将泄漏确定为甲苯,就可以将PID量表设置为甲苯校正因子,如果暴露于1 ppm的甲苯,PID将准确地读取1 ppm。记住:我们将头用于选择性和灵敏度的PID。直到确定化合物为止,不使用校正因子。
摘要:环形谐振器是硅光子学中滤波器、光延迟线或传感器的重要元件。然而,目前工厂中还没有低功耗的可重构环形谐振器。我们展示了一种使用低功耗微机电 (MEMS) 驱动独立调节往返相位和耦合的加/减环形谐振器。在波长为 1540 nm 且最大电压为 40 V 的情况下,移相器提供 0.15 nm 的谐振波长调谐,而可调耦合器可以将直通端口处的光学谐振消光比从 0 调节到 30 dB。光学谐振显示出 29 000 的被动品质因数,通过驱动可以增加到近 50 000。MEMS 环在晶圆级上单独真空密封,能够可靠且长期地保护免受环境影响。我们循环机械致动器超过 4 × 10 9
基因组编辑的最新进展极大地促进了开发生物技术作物以实现更可持续的粮食生产的努力。CRISPR/Cas 是最通用的基因组编辑工具,它已显示出创造基因组修饰的潜力,这些修饰范围从基因敲除和基因表达模式调节到等位基因特异性改变,以设计出具有多种改良农艺性状的优良基因型。然而,一个常见的瓶颈是将 CRISPR/Cas 递送到不易转化和再生的作物。最近提出了几种技术来克服转化顽固性,包括 HI-Edit/IMGE 和编码形态发生调节剂的基因的异位/瞬时表达。这些技术可以消除使作物无法进行基因组编辑的障碍。在这篇综述中,我们讨论了作物基因组编辑的进展,特别关注使用技术来改善复杂性状,例如玉米的水分利用效率、干旱胁迫和产量。
重症监护社会仍然不是现代的,而且建议仍然没有很多建议。支持的信息不足。癌症的患者中目前,没有建议仅在筛选中使用哪些工具?患者进入ICU如果使用任何工具来预测由于各方面的多样性,例如癌症,血液学或实体瘤,类型的癌症疾病治疗的选择,必须将必须调节到ICU的指标尚未得出结论。在法国有一项医生的研究。通过ICU医生的判断,这组患者的工具发现将进入ICU的患者将拥有症状太严重了(“太病了”)30天和180天的生存率为26%,而在某些医生中则为17%。进入ICU的患者的症状太好了(“太好”时的死亡率为21.3%(由于频繁ICU的延迟)尽管这组患者的死亡率仍然很高,选择进入ICU的患者越有用,但建议文献越重要地进入ICU中的ICU。危机患者如表2 div>
图 2. 应用于肿瘤的热或机械治疗超声方案的示例。聚焦超声 (FUS) 波(顶部,浅蓝色:代表性声波模式)可调节到消融或亚消融暴露水平,从而对肿瘤组织(棕褐色;红色:血管)产生广泛的生物效应。这些包括(从左到右)血脑/肿瘤屏障 (BBB/BTB) 打开,微泡用于药物或基因 (绿点) 输送;机械破坏(即机械消融)导致细胞膜破坏和组织分馏;热消融导致凝固性坏死,即组织“烧灼”(灰色椭圆);以及亚消融加热导致高热,即组织“变暖”(粉色)。超声处理可以应用于多种模式,以实现全部或部分肿瘤覆盖(白色箭头)。图中未显示的是其他已知的作用机制,例如放射增敏和声动力疗法。改编自 Curley 等人(2017 年),版权归 Ivyspring International Publisher 所有;根据 Creative Commons Attribution-Noncommercial 4.0 International(CC BY NC 4.0)许可证(creativecommons.org/licenses/by-nc/4.0)获得许可。