(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2023年12月20日发布。 https://doi.org/10.1101/2023.12.20.572550 doi:Biorxiv Preprint
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月28日。 https://doi.org/10.1101/2025.01.08.632037 doi:biorxiv preprint
Ming Hu,1 In ^ es Cebola,2 Gaelle Carrat,1 Shuying Jiang,1 Sameena Nawaz,3 Amna Khamis,4 Mickae¨ l Canouil,4 Philippe Froguel,4 Anke Schulte,5 Michele Solimena,6 Mark Ibberson,7 Piero Marchetti,8 Fabian L. Cardenas-Diaz,9,10 Paul J. Gadue,9,10 Benoit Hastoy,3 Leonardo Almeida-Souza,11 Harvey McMahon,12 和 Guy A. Rutter 1,13,14,* 1 英国伦敦帝国理工学院医学系细胞生物学和功能基因组学科,汉默史密斯医院,杜凯恩路,伦敦 W12 0NN,英国 2 英国伦敦帝国理工学院代谢、消化和生殖系遗传学和基因组学科,汉默史密斯医院,杜凯恩路,伦敦 W12 0NN,英国英国伦敦 Cane Road W12 0NN 3 牛津大学糖尿病内分泌与代谢中心,牛津大学丘吉尔医院,牛津海丁顿 OX3 7LE,英国 4 里尔大学,法国国立科学研究院,里尔 CHU,里尔巴斯德研究所,UMR 8199 - EGID,59000 里尔,法国 5 赛诺菲-安万特德国有限公司,65926 法兰克福,德国 6 德累斯顿工业大学医学院慕尼黑亥姆霍兹中心保罗兰格汉斯研究所,01307 德累斯顿,德国 7 Vital-IT 集团,SIB 瑞士生物信息学研究所,1015 洛桑,瑞士 8 比萨大学内分泌与代谢系,56126 比萨,意大利 9 宾夕法尼亚大学病理学与实验室医学系,费城,宾夕法尼亚州,美国10 美国宾夕法尼亚州费城费城儿童医院细胞与分子治疗中心 11 芬兰赫尔辛基赫尔辛基大学 HiLIFE 生物技术研究所和生物与环境科学学院 12 英国剑桥弗朗西斯克里克大道 MRC 分子生物学实验室 CB2 0QH 13 新加坡南洋理工大学李光前医学院 14 主要联系人 *通信地址:g.rutter@imperial.ac.uk https://doi.org/10.1016/j.celrep.2021.108703
dars-as1,是Aspartyl-tRNA合成酶反义RNA 1的缩写,已成为癌症中的关键玩家。该lncRNA的上调是在各种癌症类型中观察到的一种复发现象,主要假定肿瘤作用,对肿瘤细胞生物学的多个方面发挥影响。DARS-AS1的这种异常表达引发了广泛的研究研究,旨在揭示其在癌症中的作用和临床价值。在这篇综述中,我们阐明了癌症患者失调的DARS-AS1表达和不良存活预后之间的显着相关性,从现有文献中汲取了癌症基因组图集(TCGA)的泛滥作用分析。此外,我们还提供了对DARS-AS1在各种癌症中各种功能的各种功能的全面见解。我们的评论涵盖了分子机制,CERNA网络,功能介质和信号传导途径的阐明,及其参与治疗耐药性,再加上DARS-AS1与DARS-AS1相关癌症研究的最新进步。这些最近的更新丰富了我们对DARS-AS1在癌症中扮演的关键作用的全面理解,从而为未来的DARS-AS1靶向策略在肿瘤预后评估和治疗干预措施中的应用铺平了道路。本评论提供了有价值的见解,以促进有效地打击癌症的持续努力。
摘要 目的 虽然确切的人类前体细胞尚未确定,但循环中的髓系前体细胞负责出生后破骨细胞 (OC) 的分化和骨骼健康。增强的破骨细胞生成导致类风湿性关节炎 (RA) 中的关节破坏,而肿瘤坏死因子 (TNF) 是一种众所周知的促破骨细胞生成因子。在此,我们研究了核因子 κ-Β 配体的受体激活剂 (RANK-L) 与 TNF 之间的相互作用,RANK-L 对髓系前体的融合和 OC 的正常发育必不可少,而 TNF 则指导来自人外周血的不同前 OC 群体的分化。方法 流式细胞术细胞分选和分析用于评估髓系群体分化为 OC 的潜力。转录组学、表观遗传分析、受体表达和抑制剂实验用于揭示 RANK-L 和 TNF 信号传导层次。结果 TNF 可作为 CD14 + 单核细胞 (MO) 分化为 OC 的关键稳态调节剂,通过抑制破骨细胞生成以有利于巨噬细胞发育。相反,一种以前未发现的 CD14 − CD16 − CD11c + 髓系前 OC 群体不受这种负调节。在健康的 CD14 + MO 中,TNF 通过 TNFR1-IKK β 依赖性途径驱动 RANK 启动子的表观遗传修饰并停止破骨细胞生成。在 RA 患者亚组中,CD14 + MO 表现出改变的表观遗传状态,导致 TNF 介导的 OC 稳态失调。结论这些发现从根本上重新定义了 RANK-L 和 TNF 之间的关系。此外,他们还鉴定出了一种新的人类循环非 MO OC 前体池,与 MO 不同,它们在表观遗传上经过预处理以忽略 TNF 介导的信号传导。在 RA 中,这种表观遗传预处理发生在 MO 区室中,从而导致该通路失败的病理后果。
yingjie Zhao 1,Yujue Wang 1,Lijie Shi 1,Woman M. M. McDonald-McGinn 2.3,T。BlaineCrowley 2.3,Daniel E. McGinn 2.3,Oanh T. T. T. T. T. T. 3,Daniella Miller 1,Daniella Miller 1,Jhih-Brong Lind 1,Jhih-Brong Lind 1,Elaine Zackai Zackai 2,3,3,H。Richn. John 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4。 W. C. Chow 5,Jacob A. S. Vorstman 6,Claudia Vingerhoets 7,Therese Van Amelsvoort 7,Doron Gothelf 8,Ann Swillen 9,Jeroen Breckpot 9,Joris R. Vermeesch 9,Stephan Eliez 10,Stephan Eliez 10,Maude Schneider 10,Marianne B. Van den Bree Bree J. Owen 11, Wendy R. Kates 12.13, Gabriela M. Repetto 14, Vandana Shashi 15, Kelly Schoch 15, Carrie E. Bearden 16, M. Cristina Digilio 17, Marta UNOLT 17,18, Carolina Putotto 19, Bruno Marino 19, Maria Pontillo 20, Marco Armando 20.21, Stefano Vicari 22, Kathleen Angkustsiri, Linda, Linda, Linda Linda坎贝尔24,蒂法尼·布斯(Tiffany Busa)25,达米安·海内·苏纳(Damian Heine-Suñer)26,基兰·C·墨菲27,德克兰·墨菲28.29,六,六,路易斯·费尔南德斯30,国际22q11.2大脑和行为联盟(IBBC)*,Zhengdong D. Zhang Zhang 1,Elizabeth。 Goldmuntz 31,Raquel E. Gur 32,33,Beverly S. Emanuel 2.3,Deyou Zheng 34,Christian R. Marshall 35,Anne S. Bassett 36,37.38,Tao Wang 39和Bernice E.
多硫化锂 (LiPSs) 的穿梭效应是阻碍锂硫电池发展的关键障碍之一。在此,我们提出了一种多孔 Mo 2 C-Mo 3 N 2 异质结构/rGO 主体,Mo 2 C-Mo 3 N 2 异质结构结合了 Mo 2 C 的高吸附性和 Mo 3 N 2 的高催化性的优点,从而实现了 LiPSs 在 Mo 2 C-Mo 3 N 2 异质界面上的快速锚定-扩散-转化。Mo 2 C-Mo 3 N 2 异质界面提高了 LiPSs 的捕获效率和向 Li 2 S 的转化率。rGO 为电子传输提供了快速路径,并充当了保护层,防止结构在循环过程中受损。密度泛函理论 (DFT) 计算表明,Mo 2 C 对 Li 2 S 4 的吸附能力比 Mo 3 N 2 强,Mo 3 N 2 具有更好的反应动力学特性。实验中,Mo 2 C-Mo 3 N 2 /rGO@S 电极表现出优异的倍率性能。在高硫负载量(3.4 和 5.0 mg cm − 2 )下,300 次循环后容量保持率为 78%,在 0.5C 下为 70%。Mo 2 C-Mo 3 N 2 /rGO 硫电极表现出 4.56 × 10 -7 cm 2 s − 1 的高 Li + 扩散系数,这得益于界面处 LiPSs 的加速转化。我们的研究结果揭示了 LiPSs 的锚定-扩散-转化在抑制穿梭效应方面的关键作用。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
PyRx-virtual 筛选工具用于与协议对接:(i)检查 SARS-CoV-2 Mpro 蛋白质结构(PDB 6Y2E)中缺失的原子、键和接触,去除水分子并使用以下参数进行能量最小化,力场:Amber ff14SB,最陡下降步长:100,最陡下降步长:0.02 Å,共轭梯度步长:10,共轭梯度步长:0.02 Å,使用 Chimera 版本 1.14 上的分子建模工具包 (MMTK) 包。(4)该最小化结构用作对接分析的受体。(ii)将最小化结构保存为 pdb 文件并导入 PyRx 软件。(iii)配体也以 pdb 格式导入。Autodock Tools 模块用于生成 pdbqt 输入文件。 (iv) 使用 Autodock Vina 算法对选定的配体进行对接。在 Autodock Vina 中,网格框设置为覆盖 Mpro 的活性位点,其尺寸为 Å:中心 (x, y, z) = (-16.46, -26.70, 1.58),尺寸 (x, y, z) = (23.34, 19.09, 10.98)。然后以 8 的详尽度运行对接模拟。使用 Autodock Vina 模块内置评分功能预测的最低结合亲和力分数 (kcal/mol) 评估对接结果。
抽象目的:肝癌是与高死亡率和发病率相关的致命恶性肿瘤。不到20%的晚期肝癌患者对单一抗PD-1治疗做出反应。肝癌免疫微环境中嗜中性粒细胞的高异质性可能有助于抵抗免疫检查点阻滞(ICB)。然而,基本机制在很大程度上尚不清楚。方法:我们通过使用转座元素将Oncogenes myc和Kras G12D整合到有条件的TRP53 NULL/NULL小鼠(PTMK/TRP53 - / - )中的肝细胞中的基因组中建立了原位肝癌模型。流式细胞仪和免疫组织化学用于评估肿瘤微环境中免疫细胞的变化。进行过体内共培养测定法,以测试与CD8 + T细胞对肿瘤相关的中性粒细胞(TAN)的抑制作用。通过抗体介导的耗竭来验证中性粒细胞,T细胞和NK细胞的作用。评估了中性粒细胞耗竭和ICB的组合的功效。结果:正性PTMK/TRP53 - / - 小鼠肝肿瘤表现出对抗LY6G治疗的中等反应,而不是PD-1封锁。中性粒细胞的耗竭增加了CD8 + T细胞的浸润,并减少了肿瘤微环境中耗尽的T细胞的数量。 此外,CD8 + T或NK细胞的耗竭消除了抗Ly6G治疗的抗肿瘤功效。 此外,抗LY6G与抗PD-L1的组合增强了细胞毒性CD8 + T细胞的浸润,此后导致肿瘤负担的减少明显更大。中性粒细胞的耗竭增加了CD8 + T细胞的浸润,并减少了肿瘤微环境中耗尽的T细胞的数量。此外,CD8 + T或NK细胞的耗竭消除了抗Ly6G治疗的抗肿瘤功效。此外,抗LY6G与抗PD-L1的组合增强了细胞毒性CD8 + T细胞的浸润,此后导致肿瘤负担的减少明显更大。结论:我们的数据表明,TAN可能有助于肝癌对ICB的抵抗力,并将TAN耗竭与T细胞免疫疗法结合起来协同提高抗肿瘤功效。关键词肝癌;中性粒细胞; PD-1,CD8 + T细胞;精疲力尽
