组蛋白H3K27甲基化的表观遗传调节最近已成为替代免疫调节的M2样巨噬细胞极化期间的关键步骤。已知会影响心肌梗塞后心脏修复(MI)。 我们假设负责H3K27甲基化的EZH2可以在此过程中充当表观遗传检查点调节剂。 我们在单核细胞分化为体外的M2巨噬细胞中,以及在体外的M2巨噬细胞中分化为M2巨噬细胞,以及在免疫后的巨噬细胞中,在体外阶段中,表观遗传酶的定位是表观遗传酶的假定胞质不活跃定位。 此外,我们表明,使用GSK-343的药理EZH2抑制分析了二价基因启动子的H3K27甲基化,从而增强其表达以促进人类单核细胞修复功能。 与这种保护作用相一致,GSK-343治疗加速了心脏炎症分辨率,可防止体内MI小鼠的梗死扩张和随后的心脏功能障碍。 总而言之,我们的研究表明,对心脏效果的药理学表观遗传学调节可能会有望限制MI后限制心脏不良改造。组蛋白H3K27甲基化的表观遗传调节最近已成为替代免疫调节的M2样巨噬细胞极化期间的关键步骤。已知会影响心肌梗塞后心脏修复(MI)。我们假设负责H3K27甲基化的EZH2可以在此过程中充当表观遗传检查点调节剂。我们在单核细胞分化为体外的M2巨噬细胞中,以及在体外的M2巨噬细胞中分化为M2巨噬细胞,以及在免疫后的巨噬细胞中,在体外阶段中,表观遗传酶的定位是表观遗传酶的假定胞质不活跃定位。此外,我们表明,使用GSK-343的药理EZH2抑制分析了二价基因启动子的H3K27甲基化,从而增强其表达以促进人类单核细胞修复功能。与这种保护作用相一致,GSK-343治疗加速了心脏炎症分辨率,可防止体内MI小鼠的梗死扩张和随后的心脏功能障碍。总而言之,我们的研究表明,对心脏效果的药理学表观遗传学调节可能会有望限制MI后限制心脏不良改造。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2021 年 11 月 6 日发布了此版本。;https://doi.org/10.1101/2021.11.05.467370 doi:bioRxiv 预印本
长链非编码 RNA 是包括免疫反应在内的生物过程的重要调节因子。lncRNA 的免疫调节功能主要在小鼠模型中得到揭示,而对 lncRNA 在人类免疫反应中的了解有限。在这里,我们鉴定出 lncRNA LUCAT1,它在受脂多糖和其他先天免疫刺激刺激的人类髓系细胞中上调。在髓系细胞中靶向删除 LUCAT1 会增加响应 LPS 的 I 型干扰素刺激基因的表达。相反,增加 LUCAT1 表达会导致可诱导的 ISG 反应降低。在活化细胞中,LUCAT1 在细胞核中富集,并与染色质结合。此外,LUCAT1 通过与细胞核中的 STAT1 相互作用来限制干扰素刺激基因的转录。总之,我们的研究强调了 lncRNA LUCAT1 作为诱导后反馈调节因子的作用,其功能是抑制人类细胞的免疫反应。
摘要:在这项工作中,使用简单的溶剂热技术制备了UIO-66-NH 2 /GO纳米复合材料,并使用现场发射扫描电子显微镜(FE-SEM),能量分散性的X射线光谱镜(EDS)和X射线散布(X-Ray衍射(XRD)对其结构和形态进行了表征。提出了一种用于检测表蛋白(EP)的增强的电化学传感器,该传感器利用UIO-66-NH 2 /GO纳米复合材料修饰的筛网印刷石墨电极(UIO-66- NH 2 /GO /SPGE)。制备的UIO-66-NH 2 /GO纳米复合材料改善了SPGE对EP的氧化还原反应的电化学性能。在优化的实验条件下,该传感器显示出明显的检测限制(LOD)为0.003 µm,线性动态范围为0.008至200.0 µm,提供了一个高功能的传感EP平台。此外,利用差分脉冲伏安法(DPV)研究了在UIO-66-NH 2 /GO /SPGE表面上研究EP和拓扑替康(TP)(TP)的同时进行电催化的氧化。DPV测量结果表明存在EP和TP的两个明显的氧化峰,峰电势分离为200 mV。最后,在药物注射中,成功使用了UIO-66-NH 2 /GO /SPGE传感器来对EP和TP进行定量分析,从而产生了高度令人满意的结果。
一个引人注目的悖论是,具有长期保守的蛋白质序列、功能和表达模式的基因通常表现出极为不同的顺式调控序列。目前仍不清楚如此剧烈的跨物种顺式调控进化如何使基因功能得以保存,以及这些差异在多大程度上影响物种内出现的顺式调控变异如何影响表型变化。在这里,我们使用一种在表达模式和功能上保守了约 1.25 亿年的植物干细胞调节剂来研究这些问题。通过在两个远亲模型拟南芥 (Arabidopsis thaliana) 和番茄 (Solanum lycopersicum) 中进行体内基因组编辑,我们在干细胞抑制基因 CLAVATA3 (CLV3) 的上游和下游区域生成了 70 多个缺失等位基因,并比较了它们对共同表型(即结出果实的心皮数量)的单独和综合影响。我们发现,与下游区域相比,番茄 CLV3 上游序列对哪怕是微小的扰动都高度敏感。相比之下,拟南芥 CLV3 功能对编码序列上游和下游的严重破坏具有耐受性。上游和下游缺失的组合也揭示了不同的调控结果。在番茄中,添加下游突变带来的表型增强主要是微弱的和附加的,而对拟南芥 CLV3 的两个区域进行突变则产生了显著的协同效应,显示出功能性顺式调控序列的不同分布和冗余。我们的研究结果证明了高度保守的植物干细胞调节器的顺式调控结构组织具有显著的可塑性,并表明顺式调控序列空间的重大重构是一种常见但又隐蔽的进化力量,它改变了保守基因调控变异的基因型与表型关系。最后,我们的研究结果强调了需要对顺式调控的空间结构进行谱系特异性解剖,以便有效地设计作物中保守的生产力基因的性状变异。
属于基本螺旋环螺旋(BHLH)家族的转录因子是开发过程中细胞命运规范和分化的关键调节因子。它们的失调不仅与发育异常有关,还与各种成人疾病和癌症有关。最近,BHLH因子的能力已在细胞置换疗法的重编程策略中被利用。这样一个因素是NeuroD1,它与表观遗传景观的重编程和潜在具有先锋因素能力,启动神经元发育程序以及执行胰腺内分泌差异有关。审查旨在巩固对人和小鼠细胞分化的多方面角色和机械途径的当前知识,并重新编程,探讨神经轨道在指导神经内分泌细胞谱系的发展和重编程中的作用。综述着重于NeuroD1的分子机制,其与其他转录因子的相互作用,其作为染色质重塑的先驱因子的作用以及其在细胞重编程中的潜力。我们还显示了神经1在分化神经元和胰腺内分泌细胞中的不同潜力,突出了其治疗潜力以及进一步研究的必要性,以充分理解和利用其功能。
摘要背景:维生素D在神经,激素和免疫学过程中起作用,影响各种疼痛障碍和相关合并症。这项研究的目的是研究绝经后女性的维生素D水平和临床特征与燃烧口腔综合征(BMS)之间的关系。方法:这项回顾性,横断面研究回顾了144名带有BMS的绝经后女性的临床和实验室数据。实验室测试测量了25-(OH)羟基维生素D,血液成分和炎症标志物。参与者的血清水平为25-(OH)羟基维生素D,为缺乏(<20 ng/ml),不足(20-30 ng/ml)和足够(> 30 ng/ml)。使用视觉模拟量表(VAS),McGuill Pain Cheallyaire(MPQ)和口腔健康影响Profile-49(OHIP-49)评估疼痛强度和与口腔健康相关的生活质量。结果:疼痛强度和与健康相关的生活质量与血清维生素D水平有关。血红蛋白,叶酸和高敏性C反应蛋白(HS-CRP)浓度在组之间各不相同。血清25-(OH)羟基维生素D水平与VAS,MPQ感觉,MPQ情感,MPQ评估和OHIP-49分数显示出负相关,表明疼痛强度较低,并且患有较高的维生素D水平。此外,铁水平与VAS评分负相关,而叶酸水平与OHIP-49评分负相关。血清25-(OH)羟基维生素D水平与HS-CRP水平负相关。结论:这些发现表明25-(OH)羟基维生素D水平与疼痛强度以及痛苦以及与口腔健康相关的生活质量之间的显着相互作用,表明其对绝经后BMS患者的治疗潜力。
抗生素耐药性 (AMR) 菌株的突然出现已被认为是影响人类和食品加工行业的最大公共卫生威胁之一。AMR 出现的原因之一是微生物能够形成生物膜,作为一种防御策略,限制抗菌剂渗透到细菌细胞中。大约 80% 的人类疾病是由生物膜相关的固着微生物引起的。细菌生物膜的形成涉及一系列基因,这些基因通过群体感应 (QS) 机制和信号通路进行调控,这些基因控制着细胞外聚合物基质 (EPS) 的产生,而细胞外聚合物基质是生物膜三维结构的基础。各种细菌常用的另一种防御策略包括成簇的规律间隔的短回文重复序列干扰 (CRISPRi) 系统,该系统可防止细菌细胞受到病毒入侵。由于多基因信号通路和控制系统参与生物膜形成的每一步,CRISPRi 系统可作为一种有效的策略来靶向参与生物膜形成的基因组系统。总体而言,该技术能够将基因位点特异性整合到宿主中,从而开发出干扰致病细菌菌株的准转基因控制策略。CRISPR-RNA 引导的 Cas9 核酸内切酶是一种有前途的基因组编辑工具,可以有效地编程以通过靶向参与生物膜形成和毒力的 AMR 编码质粒基因来重新使细菌敏感,从而恢复细菌对抗生素的耐药性。研究人员认为,CRISPRi 促进的编码与生物膜生产相关的调节蛋白的基因沉默是一种可靠的方法,可以通过灭活生物膜形成基因或将与抗生素耐药性或荧光标记相对应的基因整合到宿主基因组中来编辑各种生物膜形成细菌中的基因网络,以便更好地分析其
摘要临床和神经科学研究表明,心理压力与健康和神经系统疾病的脑健康降低之间的联系,但尚不清楚介导途径是否相似。因此,我们在42名健康人员中应用了动脉固定的MRI压力任务,有56个具有多发性硬化症,并研究了区域神经压力反应,压力响应性区域的功能连通性与大脑时代的功能连通性之间的关联,而大脑年龄的预测误差,高度敏感的机器学习大脑健康生物标志物,以及两组中的一组。组之间的压力反应性没有差异。尽管脑年龄升高的预测错误表明患者的脑部健康状况较差,但前岛 - 枕皮层(健康人:枕骨;患者:梭状回)功能性连接性与两组的脑时代预测误差相关。最后,灰质也对跨组的区域脑时代做出了类似的贡献。这些发现可能暗示着一种常见的应激 - 脑健康途径,其影响在多发性硬化症中受到疾病特定的脆弱性因素的影响。
凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。 2。 当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。 3。 SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。 2。 当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。 3。 SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。2。当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。3。SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。4。当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。6。东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。<东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。9。日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。11。凯奥大学机械工程系,3-14-1 Hiyoshi,Kohoku-ku,横滨,卡纳那川223-8522,日本计算机分子设计实验室,Riken Biiken Biosystems Dynamerss Dynamics Research(BDR),Osaka 565--0874,日本10。人类生物学 - 微生物 - 量词研究中心(WPI-BIO2Q),Keio University,东京160-8582,日本#这些作者贡献了同样的贡献。12应该解决信件:铃木穆萨塔克(Masataka Suzuki)和凯奥·萨萨贝(Jumpei Sasabe)药理学系,凯奥大学医学院(Keio University of Medicine of Medicine of Medicine of Medicine of Medicine of School of Medicine of School of School of Shinjuku-ku),东京160-8582日本。电话: +81-3-5363-3750。传真: +81-3-3359-8889。电子邮件:masataka.s@keio.jp; sasabe@keio.jp电子邮件:masataka.s@keio.jp; sasabe@keio.jp
