最近已经证明了Terahertz(THz)发射量子级联激光(QCL)梳子的全相控制,即使是最苛刻的应用,也为新的视角开辟了新的观点。在此框架中,简化控制这些设备的设置将有助于加速其在许多领域的传播。这项研究报告了一种使用非常简单的实验设置来控制THZ QCL梳子的发射频率的新方法,从而利用了普通的白色光发射二极管的不相干发射。在这些条件下可访问的略有扰动式允许调整半导体的复杂折射率,而不会破坏宽带激光增益。软执行器的表征并与另一个执行器(QCL驱动电流)进行了比较。显示了这种额外的自由度对于频率和thz QCL梳子的相位稳定的适用性,并讨论了观点。
摘要:过去二十年来在数字平台上出现的超级目标广告现在被更有效地理解为调整广告,这是一个充满活力且不断发展的过程,在该过程中,广告在实时对用户进行了不断地“优化”广告。在Rieder和Hofmann(2020)之后,我们旨在为“观察练习”算法调整的数字广告制定一个框架。我们借鉴了澳大利亚广告天文台的研究以及关于数字酒精广告的多年研究项目。在这些项目中,我们构建了自定义的工具,以从平台广告库中收集广告,并通过公民科学家的数据捐赠。我们认为,数字广告的力量越来越符合其调整的能力。平台的广告透明度工具引起了我们对广告的关注,但是我们需要发展能够观察动态的社会技术调整过程的能力。我们概念化了广告的“调谐序列”的可视化,作为广告“库”的替代方法。我们认为,开发观察这些调谐序列的能力更好地阐明了建立公众理解和问责制所需的观察方式,他们都在寻找公众的理解和问责制。
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
1一般数学是针对高年级学生的课程,他们的未来研究或工作不需要微积分知识,并且基于Acara高级二级课程。除了图理论主题外,它还还包括双变量和时间序列分析,序列,地球几何学和时区以及贷款,投资和年金中的生长和衰减。
Pin Order Pin Name I/Otype describe 1 AMINN simulation MWandLWAntenna negative input 2 AMINP simulation MWandLWAntenna positive input 3 RFINP RFenter RF Input 4 RFGND RFland RF Ground 5 DVSS Digitally Digitally 6 DVDD Digital Power power supply 7 RF_SW numberI/O Function1: RF circuit switch control pin.函数2:用作数据引脚(集成47KOHMPULL-UP电阻器)时访问外部eprom。8调整数字输出有效站指示9 CH模拟输入频率控制引脚10跨度模拟输入频段开关控制11 AM_FM numberi/o default47KOHMPULL-UP UPIOR。函数1:用于切换Muteefect。功能2:用于通过按键切换频带。函数3:用于带有波开关的开关带。函数4:访问外部epromas a时钟别针。12 AOUT模拟输出音频输出13 AVSS模拟地面模拟地面14 XI/RCLK模拟/O晶体15 XO Simulationi/O Crystal
需要在吉他上产生适当的和弦和声,需要调整或调整字符串。但是,大多数吉他学习者根据听力手动进行调整。这肯定需要很长时间,因为在调整过程中,用户必须反复转动弦旋钮才能获得和谐而精确的音调。尽管当前在Android上有许多吉他调谐应用程序,但在调整过程中,用户必须手动转动String旋钮。本研究旨在创建一种称为“学习吉他和弦”的工具,以自动执行调整过程,并且根据标准吉他弦音调使用快速傅立叶变换(FFT)算法的频率,结果是快速而准确的。fft可以将信号从时域转换为频域,在时间域F(x)中的一系列数字被转换为频域F(u)。使用已执行的黑匣子测试方法考虑测试结果,可以说,基于Android上的快速傅立叶吉他调谐同步设计应用程序可以正确地获得用户输入的频率。此外,还通过将调谐过程与2个应用程序(即绝对吉他和吉他调谐器)进行比较来进行准确测试。从应用程序比较获得的结果证明,学习吉他和弦应用程序中调谐过程的准确性非常好,因为它可以产生与其他应用程序相同的结果。尽管相等的性格尺度是弦乐器最受欢迎的调音技术之一,但也应考虑其他技术,因为它用于各种乐器中。
量子通信背景:二维材料中的单光子发射器 (SPE) 已成为量子技术和量子通信的有前途的平台。这些发射器能够产生单个光子,这对于安全通信、量子计算和其他需要操纵量子态的应用至关重要。过渡金属二硫属化物 (TMD) 等二维材料由于其原子级薄性质、强激子效应以及与其他量子器件集成的潜力,为实现 SPE 提供了独特的环境。在这些材料中,缺陷、应变和局部激子可以捕获电子和空穴,从而导致单光子的发射。此外,二维材料提供可调的电子和光学特性,可以更好地控制发射特性,例如波长和偏振。此外,基于二维材料的 SPE 的可扩展性和与现有光子和光电器件的集成使其成为未来量子技术的有力候选者。
摘要 —本文介绍了一种可调的新型死区控制电路,为电源转换器优化提供最佳延迟。我们的方法可以减少死区损失,同时提高给定电源转换器的效率和功率密度。该电路提供了一个可重构延迟元件,可为具有不同负载和输入电压的不同电源转换应用产生宽范围的死区。推导出降压转换器的最佳死区方程,并讨论了其对输入电压和负载的依赖性。实验结果表明,所提出的电路可以提供宽范围的死区延迟,范围从 9.2 ns 到 1000 ns。针对不同的电容负载 (CL ) 和工作频率 (fs ) 测量了所提出的电路的功耗。在 CL = 12 pF、V dd = 3.3 V 和 fs = 200 kHz 时,该电路在测得的死区范围内消耗的功率在 610 µW 到 850 µW 之间。当选择最小死区时间为 9.2 ns 时,所提出的死区发生器可以运行高达 18 MHz。所提出的电路占用面积为 150 µ m × 260 µ m。将制作的芯片连接到降压转换器以验证所提出的电路的运行。与死区时间为 T DLH = T DHL = 12 ns 的固定转换器相比,具有最小 T DLH 和最佳 T DHL 的典型降压转换器在 I Load = 25 mA 时的效率提高了 12%。
本文介绍了一种新的经验方法,即交叉环境超参数调谐基准,该方法使用单个超参数设置比较了环境之间的RL算法,从而鼓励算法开发对超级参数不敏感。我们证明,即使使用了很少的样品,这种基准对统计噪声具有鲁棒性,并且在重复的范围中获得了定性相似的结果。这种鲁棒性使得基准计算上的计算便宜,从而可以以低成本的统计良好见解。我们在一组六个小型控制环境(SC-CHTB)以及28个环境(DMC-CHTB)的整个DM控制套件上演示了CHTB的两个示例实例。最后,为了说明CHTB对现代RL算法的适用性,我们对连续控制文献中的一个开放问题进行了新的经验研究。我们充满信心地表明,Ornstein-Uhlenbeck噪声和不相关的高斯噪声在DMC-CHTB上使用DDPG算法探索没有有意义的差异。