在原子上薄的二维GESE/SNS异质结构的界面处设计了从插入的杂种原子(例如Cu)衍生成的量子材料,并设计了其光电特征,以用于下一代光伏应用。先进的AB始于建模表明,多体效应诱导中间带(IB)状态,子带差距(〜0.78和1.26电子伏特)是下一代太阳能设备的理想选择,这有望比Shockley-Queisser的效率大于〜32%。整个异质结的电荷载体在空间上均具有能量和自发限制,从而降低了非辐射重组并提高量子效率。在太阳能电池中使用这种IB材料可增强在近红外至可见光范围内的吸收和载体的产生。调整活性层的厚度在大于600 nm的波长下增加光活性,在宽太阳波长范围内达到了〜190%的外部量子效率,从而强调了其在高级光伏技术中的潜力。
摘要:机械应变可用于调整单层过渡金属二核苷(1L-TMD)的光学特性。在这里,从1l-wse 2薄片的上转换光致发光(UPL)用通过十字形弯曲和压痕法诱导的双轴应变调节。发现,随着施加的双轴应变从0%增加到0.51%,UPL的峰位置被大约24 nm红移。同时,对于在-157 MeV至-37 MeV之间的宽范围内的上转换能量差,UPL强度指数增加。在三种不同的激发波长为784 nm,800 nm和820 nm处的1L-WSE 2中,UPL发射在1L-WSE 2中观察到的线性和肌功率依赖性表示多音辅助的一photon photon UpConversion发射过程。1L-TMDS的应变依赖性UPL发射的结果铺平了光子上转换应用和光电设备进步的独特途径。
摘要:本研究探讨了内感受和社会框架对运动同步任务中脑间电生理 (EEG) 和血流动力学 (通过功能性近红外光谱 (fNIRS) 收集) 功能连接一致性的影响。14 个二元组在有和无内感受焦点的情况下执行运动同步任务。此外,通过增强共享意向性,运动任务具有社交或非社交框架。在实验期间,通过 EEG-fNIRS 超扫描范例收集 delta、theta、alpha 和 beta 频带以及氧合和脱氧血红蛋白 (O2Hb 和 HHb)。计算两个神经生理信号的脑间一致性指数,然后将它们关联起来,以探索二元组中功能连接 EEG-fNIRS 的相互一致性。研究结果表明,与无专注条件和右半球相比,专注状态下左半球的 delta 和 O2Hb、theta 和 O2Hb 以及 alpha 和 O2Hb 之间的相关值显著更高(专注和无专注条件下均如此)。此外,当任务以社交方式与非社交方式进行比较时,在专注状态下左半球的 delta 和 O2Hb 以及 theta 和 O2Hb 之间的相关值更高。这项研究表明,专注于呼吸和共同的意向性会连贯地激活执行联合运动任务的二元组中相同的左额叶区域。
硅光子学正迅速扩展到传感和微波光子学等新应用领域 [1]。此类应用需要可调谐滤波器,而可使用波导环形谐振器 (RR) 高效构建。此类无限脉冲响应 (IIR) 滤波器也可采用可配置的循环波导网格灵活实现,但由于光学长度较长且采用多个分立元件,因此品质因数 (Q) 和自由光谱范围 (FSR) 较低。此外,由于采用了热光驱动,当前代工平台中可用的有源元件功耗在 mW 级。基于 MEMS 的元件对于可编程电路而言颇具吸引力,因为它们可以在短光学长度内高效调整相位或功率,功耗低于 µW [2]。MEMS 执行器已用于可调 RR [3-5],但尚未出现可控制相位和两个耦合器的紧凑型分插环。 Chu 和 Hane 展示了一种光学长度极短、谐振调谐范围大的 RR,但 Q 值限制为 1.6 × 103 [ 3 ]。Park 等人报道了完全可重构环,但 FSR 低于 0.2 nm [ 5 ]。这里,我们展示了一个分插环谐振器,其 FSR 为 4 nm,并且对相位(失谐)和两个定向耦合器均进行了模拟控制。该设备是在 IMEC 的 iSiPP50G 代工平台上实现的,经过了一些后处理步骤。
摘要:我们报告称,通过将市售的 Ti:Sapphire 飞秒、1 kHz 激光系统与光参量放大器 (OPA) 相结合,实现了近 50% 的高转换效率。对于 1 kHz 和 35 fs 持续时间的 2.2 mJ/脉冲的输入能量,在信号波长为 1310 nm 时,信号加上闲置脉冲的总 OPA 输出能量为 1.09 mJ/脉冲。我们发现,由于 OPA 中的高增益饱和,输出光束轮廓几乎是平顶的。利用信号脉冲,我们在气体中产生高次谐波,并测量从氩气中电离的光电子的速度图图像与信号波长的关系。我们观察到,在高次谐波光子能量的特定范围内,在低动能区域观察到四倍光电子角结构。我们的结果表明,具有高转换效率OPA和超高斯光束轮廓的输出脉冲可用于需要在极紫外区域产生可调谐高次谐波的实验。