在行业中,分析化学用于确保产品质量和安全性。通过分析产品样品,我们可以确保产品符合质量标准设置并安全消费或使用。在医学领域,分析化学在疾病的诊断中起着重要作用。通过血清,尿液或其他体液等生物样品分析,我们可以检测出疾病或健康问题的存在,以计划适当的治疗。临床分析主要使用分析化学品(D'Orazio,2003)。随着分析化学的发展,临床分析不仅在临床化学实验室中进行。生物标本的分析测量值在各个地方(包括医院的服务点(护理点),医院外部的服务以及患者的家(家庭护理)(家庭护理))常规进行。用于测量某些快速准确的标本的生物分析传感器对于与紧急情况相关的服务非常必要。除了快速准确,化学分析还必须具有选择性和敏感性。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
敏感传感器、全光开关和可重构分插滤波器[5-7]。前期工作中,利用微环谐振器(MRR)的对称谐振特性,已经制作出许多带宽可调的器件[8-12]。例如,一种是基于单个微环谐振器的滤波器,其谐振器的耦合系数由微机电系统调整。然而,要实现 MEMS 可调谐性,需要施加近 40 V 的高驱动电压 [5]。另一种也是基于单个微环谐振器的滤波器 [13]。其谐振器的耦合系数由热光移相器调整。这种滤波器的缺点是带宽变化范围有限,带外抑制性能较差。还有一种结合了 MZI 和环形谐振器的滤波器,环形谐振器嵌入 MZI 臂中,其带宽调谐受到带内纹波和插入损耗的限制 [14]。在本文中,我们展示了一种基于环形谐振器和具有 Fano 谐振的 MZI 的带宽可调光学滤波器。它由两个单个 MRR 和一个由两个 1 9 2 多模干涉 (MMI) 构成的 MZI 结构组成。两个单个 MRR 的耦合系数均由热光移相器调谐。在这种新设计中,由两个 TiN 加热器控制的两个 MRR 可用于产生额外的相位以打破正常 MRR 的对称洛伦兹形状。通过两个不对称洛伦兹形状的叠加可以观察到 Fano 谐振,并且 3 dB 通带明显增宽。利用硅的热光(TO)特性,带宽范围从0.46到3.09nm,比以前的器件更宽。输出端口的消光比大于25dB,自由光谱范围(FSR)为9.2nm,适合光电集成电路中的传输。众所周知,通过端口3dB,带宽是一个重要的
本文介绍了一种使用 Minkowski-Sierpinski 分形技术和基片集成波导 (SIW) 在 60 GHz 谐振的新型贴片天线设计。该天线拟用于无线体域网应用 (WBAN)。所提出的天线采用 Rogers 5880 基片实现,其介电常数 (ε r ) 为 2.2,损耗角正切为 0.0004,基片高度为 0.381 mm。计算机仿真技术 - 微波工作室 (CST-MW) 用于仿真所提出的天线。仿真结果显示,在 (58.3-61.7) GHz 范围内具有 3.5 GHz 的宽带宽,回波损耗大于 -10 dB。模拟增益为 7.9 dB,线性天线效率为 91%。所提出的天线用于改善 WBAN 应用的毫米波 (mm-Wave) 频段的辐射方向图、带宽和增益的质量。
在量子干扰的模型中发现了两个可见的颞腔孤子的分支,在微分分散体中具有三级培养基的微孔干扰器中。孔孤子是由于移动域壁的锁定。我们在空腔谐振的相对侧识别两个不同的麦克斯韦点,其中域壁是固定壁和两个不同的颞腔孤子子,一个狭窄且具有较高的峰强度,另一个较高的峰强度,并且具有较低的峰强度,在宽参数范围内并存,而无需二级空腔共振。将两个孤子分支结合在数十个腔圆旅程的时间尺度上的局部结构。通过不同类型的多稳态腔孢子的组合生成的频率梳会导致增强的带宽及其对照。
原子量子圈(“旋转”)与捕获的离子库仑晶体中的集体运动之间的抽象激光控制的纠缠需要从激光器进行条件动量转移。由于自旋依赖性力是从自旋光相互作用中的空间梯度得出的,因此该力通常是纵向的,与平均激光K -vector(或两个梁的K-矢量差异)平行且成比例,这构成了可访问的自旋 - 运动偶联的方向和相对幅度。在这里,我们显示了如何由于其横向发射中的梯度而垂直于单个激光束传递动量。通过控制离子的位置的横向梯度通过光束塑造,可以调节边带和载体的相对强度,以优化所需的相互作用并抑制不需要的,抗谐振的效果,从而降低了栅极的限制。我们还讨论了这种效果如何在最近的实验中扮演着未引人注目的角色。
磁振荡设备最近被开发为非常有效的无线微型位置跟踪器和传感器,具有出色的精度和传感距离,可用于手术和机器人应用。但是,尚不清楚延伸机械谐振的亚毫米磁铁与外部磁场或梯度相互作用,这会诱导sub-MHz向几个Hz的频移,因此会影响感应精度。在这里,我们对基于悬臂的磁振荡无线传感器(MOW)进行实验研究,并建立了有关磁和机械相互作用的分析模型。毫米尺度的割草能够检测到至少±5 mt分辨率的磁场,同时检测磁场梯度,分辨率为65 µ t/m至至少±50 mt/m。磁场灵敏度允许直接计算机械设备的性能,并且可以分析磁场和梯度的个体贡献。衍生模型是一般的,可以应用于与磁性环境相互作用的其他磁振荡系统。
摘要 结构健康监测和无损检测技术通常用于评估高价值航空航天、机械和民用系统的生命周期和可靠性。维护和检查间隔通常基于时间,并依赖于结构健康监测/无损检测技术来检测由疲劳或环境损坏造成的宏观损坏。当前的工作提出了一种综合材料-结构-动力学方法来提供结构健康的状态感知。所提出的方法将传统的结构健康监测/无损检测重点从寻找裂纹转移到基于跟踪材料-结构-动力学状态的能量变化的健康状态感知。在暴露于非线性谐振的悬臂结构中跟踪能量变化,其中梁的应变能量被导出并用于确定健康状态指数。纳米压痕用于探测梁的近表面机械性能,以表征局部材料变化与疲劳循环的关系。考虑采用非线性超声方法将局部材料行为变化与梁的动态性能变化联系起来。调查的目的是将传统上分离的材料、结构和动力学方法与结构健康监测/无损检测联系起来,同时提供
在光学量子信息处理中,基于半导体材料中的两级系统的单光子源可实现单个光子的需求生成。为了启动伴随发射过程,有必要有效地填充激发态。然而,由于在固态环境中存在电荷噪声和声子诱导的反应性,因此以高效率和高光子不明智的效率和高光子不明智的态度来调解需求的需求仍然是一个挑战。在这里,我们重建了WSE 2量子发射器在发射过程中经历的声子光谱密度,我们将此信息用于理论上分析谐振,声音辅助和量子发射器种群(SUPER)摇摆激励方案的性能。在谐振激发下,我们获得了强烈的声子耦合的激发剂限制为0.80的激动子制剂,而超级方案(或0.89,根据所考虑的发射极类型)提高到0.96(或0.89)。在近谐振的语音辅助激发下,我们的理论预测了近乎统一的激发保真度,最高为0.976(0.997)。此外,我们证明,假设抑制了声子边带,诸如电荷和自旋波动之类的残留脱位机制是破坏光子无法区分性的主导地位的反折叠机制。