本文介绍了一种由压电微机械超声换能器 (pMUT) 阵列实现的空中触觉接口设备,该设备首次在 15 mm 距离处实现了前所未有的 2900 Pa 的高传输压力。该结构基于溅射铌酸钾钠 (K,Na)NbO 3 (KNN) 薄膜,具有高压电系数 (𝑒𝑒 31 ~ 8-10 C/m 2 )。由 15×15 双电极圆形隔膜组成的原型 KNN pMUT 阵列的谐振频率约为 92.4 kHz。测试结果显示,在 15 mm 外的自然焦点处,仅在 12 V pp 激励下,传输灵敏度就达到每伏 120.8 Pa/cm 2,这至少是之前报道的类似频率的 AlN pMUT 的 3 倍。此外,还实现了在人手掌上产生类似风的感觉的即时非接触式触觉刺激。因此,这项研究为人机界面应用(如消费电子产品和 AR/VR 系统)开发出一种具有高声输出压力的新型 pMUT 阵列提供了启示。关键词
摘要:血糖的测量受到多种约束的影响;在设计电磁非侵袭性传感器时,必须识别和量化这些约束。第二阶段涉及这些约束的影响的水平。在这项工作中,我们研究了前臂中静脉半径对谐振微波传感器的影响,以测量糖血症。我们使用与微波谐振器接触的提议的组织模型的COMSOL多物理进行了数值模拟。其他一些因素会影响测量,例如温度,灌注,传感器定位和运动,组织异质性和其他生物学活性。传感器必须适合上述约束。由于静脉的大小从一个人变为另一个人,因此传感器看到的介电特性会有所不同。在模拟传感器的共振频率中为不同静脉尺寸的谐振频率所产生的变化证明了这一点。评估的第二个约束是剂量法。应评估任何电磁设备的特定吸收率(SAR),并将其与安全标准中的SAR限制进行比较,以确保用户的安全性。模拟结果与安全标准中的SAR限制非常吻合。
具有新特性的超材料在过去的几十年中引起了广泛的研究关注。已报道的超材料已在各个工程领域中被提出和开发了许多应用。具体而言,对于具有窄谐振线宽和强谐振强度的谐振型超材料,谐振频率和强度高度依赖于由环境物理或化学参数变化引起的超原子结构和/或基底介质性质的变化。因此,近年来开发了用于谐振型超材料单元或阵列的物理或化学传感应用。在这篇小型综述中,为了帮助这些领域的研究人员赶上最新的研究进展,我们想总结一下最近报道的基于不同种类超材料的高性能超材料启发式传感应用,特别是温度传感应用。重要的是,通过分析几种传统超材料单元的优缺点,讨论了新提出的高品质因数超材料单元在灵敏度和分辨率方面的高精度传感应用。这篇小型评论可以指导超材料启发传感器领域的研究人员找到一些高精度传感的新设计路线。
摘要:这项研究研究了由于振动暴露而导致两轮电动汽车电池组的结构保护水平。这项研究包括两个阶段:首先,对固定装置和电池组中的谐振频率进行了探索,然后使用UN ECE R136测试配置文件进行振动测试,其中包括7-200 Hz的频率范围以及10-80 m/s²之间的频率范围。这些测试旨在模仿典型操作过程中两轮电动电池经历的振动暴露。振动周期重复七次,每个周期后,对电池组结构进行评估,使用72伏20 AH Li-Ion电动摩托车电池组作为测试样品。结果表明,电池组的共振在28 Hz时产生的共振,导致加速扩增超过了所施加的振动暴露的40%,总力量高达226.95 n,电池结构压力为226.95 n。共振严重损害了所有四个弹性基础,而BMS支架支撑上电池结构。这些发现强调了对电池组结构进行进一步研究的必要方法,用于在所有测试条件下能够承受共鸣的两轮电动汽车,从而确保了电池组的安全性和耐用性。
在寻求可扩展的量子处理器的过程中,人们投入了大量精力来开发低温经典硬件,以控制和读出越来越多的量子比特。当前的工作提出了一种称为阻抗测量的新方法,该方法适用于测量连接到谐振 LC 电路的半导体量子比特的量子电容。阻抗测量电路利用互补金属氧化物半导体 (CMOS) 有源电感器在谐振器中的集成,具有可调谐振频率和品质因数,从而能够优化量子器件的读出灵敏度。实现的低温电路允许快速阻抗检测,测得的电容分辨率低至 10 aF,输入参考噪声为 3.7 aF/ffiffiffiffiffi Hz p。在 4.2 K 时,有源电感的功耗为 120 μW,此外还有片上电流激励(0.15 μW)和阻抗测量电压放大(2.9 mW)的额外功耗。与基于色散 RF 反射测量的常用方案(需要毫米级无源电感)相比,该电路的占用空间明显减小(50 μ m 3 60 μ m),便于将其集成到可扩展的量子经典架构中。阻抗测量法已被证明是一种
磁共振成像(MRI)广泛用于临床护理和医学研究中。测量效应的参数中的信噪比(SNR)确定图像的诊断值,例如空间分辨率,对比度和扫描时间。手术植入的射频线圈可以增加随后对相邻组织的MRI研究的SNR。SNR中所产生的好处是通过与手术去除这些线圈或将它们永久性地将其保持在原位的显着风险来平衡的。作为替代方案,作者在这里报告了完全由可生物吸收的有机和无机材料制成的可植入式电感 - 电容器电路的类别。对电感器和电容器设计的工程选择提供了选择设备的谐振频率以满足MRI规范的能力(例如,在4.7 T MRI时为200 MHz)。此类设备可增强SNR并提高相关的成像功能。这些简单的小生物电子系统在生理条件下在临床相关的时间范围内(最多1个月)的功能,然后通过生物吸附的自然机制完全消失,从而消除了对手术提取的需求。在神经幻影和人尸体中的成像演示表明,这项技术具有对手术后监测/评估恢复过程的广泛潜力。
摘要这项研究的目的是根据紫外线辐射和温度的形式确定环境因素对聚合物复合材料(PrepRegs)振幅频率行为的影响,基于热敏环氧树脂用高强度R-Glass纤维增强的框架工作。准备了两种具有不同纤维排列的复合材料。该系列的纤维以30°,45°和60°的角度排列在与中心层相关的对称和不对称方向下。复合材料经过调节,在中欧和东欧温带温暖的过渡气候中,在春季和夏季模拟了六个月的使用。为此目的使用了由Q-Lab Corporation制造的UV Quv/Spray/RP加速老化室,使用UV-A 340灯来模拟日光。此外,使用热冲击室T/60/V2 Weisstechnik对突然温度变化引起的不同载荷进行了同样的变化。使用Tiravib 50101电磁激发仪与LMS Scadias III控制器和测试结合使用的条件样品。实验室软件。以谐振区域的幅度 - 频率图的形式表明,测试的结果表明,由于调节性,这是某些变化,这是材料测试领域的新发展。结果阐明了环境条件对复合材料刚度特性的影响,在谐振频率下运行时会导致动态非线性。
摘要 — 本文介绍了如何配置一个流行的、商业上可用的软件包,用于解决基于有限元方法 (FEM) 的偏微分方程 (PDE),以有效地计算轴对称介电谐振器的回音壁 (WG) 模式的频率和场。该方法具有可追溯性;它利用 PDE 求解器接受所谓“弱形式”中麦克斯韦方程解的定义的能力。提供了用于估计 WG 模式的体积、填充因子以及在封闭(开放)谐振器的情况下的壁(辐射)损耗的相关表达式和方法。由于没有施加横向近似,即使对于低、有限方位角模式阶的准横向磁/电模式,该方法仍然准确。通过对几个非平凡结构进行建模,证明了该方法的通用性和实用性:(i)两个不同的光学微腔[一个由二氧化硅制成的环形,另一个是AlGaAs微盘];(ii)三阶蓝宝石:空气布拉格腔;(iii)两个不同的低温蓝宝石WG模式谐振器;(ii)和(iii)都在微波X波段工作。通过将(iii)之一拟合到一组测量的谐振频率,可以估算出蓝宝石在液氦温度下的介电常数。
基于超导电路的超导量子比特由超导电容器和具有 transmon 几何的约瑟夫森结组成,广泛应用于高级量子处理器,追求可扩展的量子计算。transmon 的量子比特频率的调整依赖于超导环路中两个超导体-绝缘体-超导体 (S-I-S) 约瑟夫森结的超电流之间的磁通量相关干扰。基于超导体-半导体-超导体 (S-Sm-S) 材料的约瑟夫森结为门可调 transmon 提供了一种可能性,称为“gate-mon”,其中量子比特频率可以通过静电平均值进行调整。在 III-V 材料平台上实现的 gatemon 显示出 transmon 替代品的令人瞩目的发展,但在可扩展性方面仍然存在一个大问题。硅锗 (SiGe) 异质结构由于其高空穴迁移率和 Ge-金属界面的低肖特基势垒而成为承载混合器件的潜在平台之一。此外,与硅基半导体行业的兼容性是扩大量子比特平台的一个有力优势。在本论文中,我们基于 SiGe 异质结构中的 Al-Ge-Al 约瑟夫森结开发了门控。首先,建立了自上而下方法中约瑟夫森场效应晶体管 (JoFET) 的稳健制造配方。我们对 JoFET 进行了详尽的测量,以研究它们随栅极电压、温度和磁场变化的特性。这些器件显示了临界电流 (I C ) 和正常态电阻 (R N ) 的栅极可调性。估计这些器件具有高透明度的超导体-半导体界面,SiGe异质结构上的高 I C R N 乘积证明了这一点。在有限电压范围内,观察到对应于多个安德烈夫反射 (MAR) 的特征。然后,我们在 SiGe 异质结构上制造和表征氮化铌 (NbN) 超导谐振器。我们在传输模式下测量谐振器,并从传输系数 (S 21) 中提取谐振频率 (f r)、内部品质因数 (Q i) 和耦合品质因数 (Q c)。随后,我们开发了制造工艺,将与电容器分流的 Al-Ge-Al 结(换句话说,gatemon)集成到谐振器方案中,并根据设计进行制造。我们在其中一个制造的 gatemon 中演示了反交叉特性。使用双音光谱技术映射门控器的谐振频率,发现它是门可调的。量子位具有较大的光谱线宽,这意味着相干时间较低。此外,我们对超导量子干涉装置 (SQUID) 几何中的结进行了电流相位关系 (CPR) 测量。我们可以证明结构成非正弦 CPR。此外,在辐照结的电流-电压特性曲线中观察到整数和半整数 Shapiro 阶跃。这表明我们的结具有 cos 2 φ 元素,这可以为受保护的量子位开辟另一种可能性。
封盖层对于保护非挥发性光子技术中使用的相变材料 (PCM) 至关重要。这项工作展示了 (ZnS) 0.8 -(SiO 2 ) 0.2 封盖如何从根本上影响 Sb 2 S 3 和掺杂 Ag 的 Sb 2 S 3 集成光子器件的性能。我们发现至少需要 30 nm 的封盖材料来保护材料免受硫损失。然而,添加这个封盖会以不同的方式影响这两种 PCM 的结晶温度。Sb 2 S 3 和掺杂 Ag 的 Sb 2 S 3 的结晶温度分别升高和降低,这归因于界面能差异。制造并测量了封盖和未封盖的掺杂 Ag 的 Sb 2 S 3 微环谐振器 (MRR) 器件,以了解封盖如何影响器件性能。令人惊讶的是,对于封盖的 PCM,MRR 的谐振频率在结晶时表现出更大的红移。这种效应是由于封盖增加了与 PCM 层的模式重叠。因此,封盖可用于提供更大的单位长度光学相移,从而减少这些可编程设备的总占用空间。总的来说,我们得出结论,PCM 上的封盖不仅可用于稳定 PCM 层,还可用于调整 PCM 结晶温度并减少设备占用空间。此外,封盖层可用于增强光物质与 PCM 元件的相互作用。