1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。 在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。 与燃烧引擎车相比,电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。 电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。 我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。 我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。 提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。 识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。 该系统将在电动汽车研究领域发挥重要作用。 索引项 - MATLAB模拟。 引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。 两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。 通用充电器的 DC/DC转换器需要在整个输出电压范围内实现高效率。1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。该系统将在电动汽车研究领域发挥重要作用。索引项 - MATLAB模拟。引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。DC/DC转换器需要在整个输出电压范围内实现高效率。通常,Chademo覆盖了最高500 V的相对低压电池,CCS覆盖了最高950 V的高压电池。要与所有EVS兼容,以适应Chademo或CCS,需要开发一个覆盖电池电压极广泛的通用EV充电器。src由于其较大的磁性电感而导致其循环损失较小,导致在谐振频率下的效率较高,但是,SRC仅提供降低电压转换率,而LLC转换器达到了启动频率的增益,而当切换频率变小时,则在较小的情况下,由于循环的循环量是在交付的方面,并且在ersonant consection中存储了这些方面,并且在这些方面取得了循环范围,而这些方面是在这些方面取得的范围,而这些方面是在这些方面取得的范围,而这些循环均可在这些方面取出,而这些均可在这些方面取得了进出,而这些转换率是在这些方面的转换,则可以在这些方面取得了进出,而这些转换率是在这些方面的转换,而这些均可依次,而循环均可置换。请注意,SRC的循环电流较小,但增益范围也有限。因此,如果在SRC中可以实现更广泛的增益,则有可能同时具有较小的循环电流和广泛的增益。由于这些原因,已经有几种方法可以为SRC提供更广泛的收益。第一种方法是脉冲宽度调制(PWM)调整的谐振转换器。在这种方法中,PWM信号引起的增强周期会增强谐振电流,从而使谐振转换器可以实现增益。这样做,可以通过较窄的开关频率范围覆盖各种电压转换比。可以通过较窄的开关频率范围降低磁性组件的尺寸。唯一的问题是当需要高增益时,共振电流的峰值很大。第二种方法是一种拓扑化技术。谐振电流的大峰会引起大的RMS电流,并导致增强开关损失。在这种方法中,控制某个开关组件以重新配置逆变器或整流器结构。例如,通过完全打开开关,全桥逆变器也可以用作半桥逆变器。
2 Google Quantum AI,加利福尼亚州戈利塔 超导量子处理器是最先进的量子计算技术之一。基于这些设备的系统已经实现了后经典计算 [1] 和量子纠错协议的概念验证执行 [2]。虽然其他量子比特技术采用自然产生的量子力学自由度来编码信息,但超导量子比特使用的自由度是在电路级定义的。当今最先进的超导量子处理器使用 transmon 量子比特,但这些只是丰富的超导量子比特之一;在考虑大规模量子计算机的系统级优化时,替代量子比特拓扑可能会证明是有利的。在这里,我们考虑对 Fluxonium 量子比特进行低温 CMOS 控制,这是最有前途的新兴超导量子比特之一。图 29.1.1 比较了 transmon 和 Fluxonium 量子比特。 transmon 是通过电容分流约瑟夫森结 (JJ) 实现的,是一种非线性 LC 谐振器,其谐振频率为 f 01,非谐性分别在 4-8GHz 和 200-300MHz 范围内。transmon 有限的非谐性约为 5%,限制了用于驱动量子比特 f 01 跃迁的 XY 信号的频谱内容,因为激发 f 12 跃迁会导致错误。以前的低温 CMOS 量子控制器通过直接 [3,4] 或 SSB 上变频 [5,6] 复杂基带或 IF 包络(例如,实施 DRAG 协议)生成光谱形状的控制脉冲;这些设备中高分辨率 DAC 的功耗和面积使用限制了它们的可扩展性。fluxonium 采用额外的约瑟夫森结堆栈作为大型分流电感。这样就可以实现 f 01 频率为 ~1GHz 或更低的量子比特,而其他所有跃迁频率都保持在高得多的频率(>3GHz,见图 29.1.1)[7]。与 transmon 相比,fluxonium 的频率较低且非谐性较高,因此可以直接生成低 GHz 频率控制信号,并放宽对其频谱内容的规范(但需要更先进的制造工艺)。在这里,我们利用这一点,展示了一种低功耗低温 CMOS 量子控制器,该控制器针对 Fluxonium 量子比特上的高保真门进行了优化。图 29.1.2 显示了 IC 的架构。它产生 1 至 255ns 的微波脉冲,具有带宽受限的矩形包络和 1GHz 范围内的载波频率。选择规格和架构是为了实现优于 0.5° 和 0.55% 的相位和积分振幅分辨率,将这些贡献限制在平均单量子比特门错误率的 0.005%。它以 f 01 的时钟运行,相位分辨率由 DLL 和相位插值器 (PI) 实现,而包络精度则由脉冲整形电路实现,该电路提供粗调振幅和微调脉冲持续时间(与传统控制器不同,使用固定持续时间和精细幅度控制)。数字控制器和序列器可播放多达 1024 步的门序列。图 29.1.2 还显示了相位生成电路的示意图。DLL 将这些信号通过等延迟反相器缓冲器 (EDIB) 后,比较来自电压控制延迟线 (VCDL) 的第一个和第 31 个抽头的信号。这会将 CLK[0] 和 CLK[30] 锁定在 180°,并生成 33 个极性交替的等延迟时钟信号。使用 CLK[30] 而不是 CLK[32] 来确保在 PFD 或 EDIB 不匹配的情况下实现全相位覆盖,这可能导致锁定角低于 180°。一对 32b 解复用器用于选择相邻的时钟信号(即 CLK[n] 和 CLK[n+1]),开关和 EDIB 网络用于驱动具有可选极性的 PI。 PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。