继与 Guillermo Lockhart 联合创作的 Misterio de Cabo Frio 大获成功之后,Desafío Profundo 推出了它的第二个叙事世界。这是一项跨机构倡议,专注于作为学习环境的故事;一项整合通信、技术和创意产业以获得更好学习体验的积极探索。新三部曲的每一部分将在 2023 年至 2025 年期间每年推出。它们分别是 1930:el viaje、1930:el origen 和 1930:la búsqueda,均由乌拉圭作家 Ana Solari 创作。首届足球世界杯是四名青少年冒险的背景。它目前是国家图书馆今年最受欢迎的书籍,并被国家体育秘书处宣布为国家体育作品。此外,跨媒体内容的探索也为我们带来了新的扩展:快速阅读版本、广播肥皂剧、《1930:我的世界联盟》、与 Laboratorios Digitales 合作的《Ceibal en Inglés》新漫画(用于课堂使用)以及视频播客《1930:谜团百年》等。
合作贯穿于我们研究所的核心,与圣安娜儿童医院的非凡合作将这种合作融入到我们的结构中。这种协同作用使我们与众不同,成为中欧为数不多的致力于儿童癌症研究的研究所之一,成为希望和创新的灯塔。我们的使命是变革性的:深入研究癌症的生物学,在基因和表观基因组水平上解开它的奥秘。通过了解癌症的本质,我们努力开创不仅更有效而且更温和、更适合每个孩子独特需求的治疗方法。我们共同努力,不仅仅是推动科学进步;我们还旨在点燃儿科肿瘤学的革命,以热情、精准和不懈的变革承诺为动力。我们的目标是更好地了解儿童癌症,我们将解开疾病复发和耐药性的谜团,在我们能够找到有效的(有时是针对性的)治疗方法来治疗这些具有挑战性的疾病之前,我们不会停止我们的使命。我们的梦想更远大——如果我们能够有效地识别出有儿童癌症特定倾向的患者,我们就可以首先预防癌症的发生。这将是我未来几年的个人梦想。
摘要:软组织肉瘤(STS)包括一大批间充质恶性肿瘤,具有异质性细胞形态,增殖指数,遗传病变以及更重要的是临床特征。对这种广泛的多样性进行全面阐明仍然是改善其治疗管理和细胞 - 原始肿瘤的身份的核心问题,这些肿瘤是这种谜团的一部分。细胞重编程允许表型或身份之间成熟细胞的过渡,并代表肿瘤异质性的一个关键驱动力。在这里,我们讨论了驱动基因在STS中介导的细胞重编程如何深刻地重塑转化的细胞的分子和形态特征,并导致对其原始细胞的错误解释。本评论质疑必须将遗传改变的表观遗传环境视为STS肿瘤启动和进展的关键决定因素。重试癌症引发细胞及其克隆进化,尤其是通过表观遗传学方法,似乎是了解这些肿瘤起源并改善其临床管理的关键杠杆。
摘要:数十年的实验和临床研究有助于揭示阿尔茨海默病 (AD) 发病机制中的许多机制,但这个谜团仍未解开。虽然我们可以假设没有完整的拼图碎片,但最近开放数据共享计划的增长,收集了 AD 患者的生活方式、临床和生物数据,提供了有关该疾病的潜在无限量的信息,远远超出了人类理解它的能力。此外,整合来自多组学研究的大数据提供了探索 AD 整个生物连续体的病理生理机制的潜力。在此背景下,人工智能 (AI) 提供了多种方法来分析大量复杂数据,以提高 AD 领域的知识。在这篇评论中,我们重点介绍了人工智能在 AD 研究中的最新发现和未来挑战。具体来说,我们讨论了使用计算机辅助诊断工具进行 AD 诊断,以及使用人工智能潜在地支持临床实践以预测个体 AD 转化风险以及患者分层,以最终开发出有效的个性化治疗方法。
摘要:了解人类遗传多样性对于发现疾病机制和设计新疗法至关重要。Paschou博士的研究集成了高通量基因组技术,神经影像学和多素分析,以鉴定复杂疾病的遗传决定因素并了解世界各地的种群结构。作为主要财团的领导者,包括精神病基因组学财团和谜团,她应用了先进的生物信息学和计算工具来分析各种人群中的大规模遗传数据,从而为疾病途径,生物标志物发现和精确的临床探索疾病的疾病,探索跨性别的临床,探索疾病途径,探索疾病,探索跨性别的临床,构成跨性别的临床,构成跨性别的临床,构成构成的构成,构成跨性别的依据,构成跨性别的临床,构成了跨性别的跨性别,构成了互联性,构成了跨性别的临床。研究正在推动创新,桥接基本生物学,面临现实世界中的健康挑战。
描述:希腊人和罗马人的知识,智慧,智慧和价值观如何通过提供实现充实和尊严的生活来教育和教育世界的知识,智慧,智慧和价值观如何?他们各自文明的指导原则依靠八个支柱: - 人类主义:人们认识到,人类有可能掌握自己的世界并充实生活。- 追求卓越:想象最高的利益并努力实现这一目标。自我知识:必须在寻求了解世界之前认识自己。- 理性主义:始终提出质疑,理性和辨别真理,从伪造,从不表面上考虑任何事情。- 无人好奇心:解决一个问题的解决通常会导致他人的谜团和追求的启示,从而迫使进一步调查。明智的人使这是一生的努力。- 自由之爱:只要一个人对他人造成任何伤害,就必须自由地生活和发现。- 个人主义:所有人都是独特的,因此必须认识到个人优势和身份。- 节制的实践:避免个人和社会行为中极端的审慎。在本课程中,学生将阅读有关希腊语和罗马对世界的贡献的两篇(简短)文本,然后继续进行特定的阅读,以阐明上面的八个原则以实现美好生活。
真菌 Andrew Urquhart(生物科学) 水平基因转移 (HGT) 是指基因在不经有性生殖的情况下在生物体之间转移的过程,它挑战了传统的遗传观点,即基因从亲本传递给后代。HGT 的一个重要特性是它可以在不同物种的个体之间移动基因。虽然 HGT 在细菌中已有详尽的记录,但它在真菌中的作用一直存在争议。最近的证据表明,HGT 确实发生在真菌中,并且可能在塑造关键表型(包括毒力)方面发挥重要作用。然而,我们不知道基因是如何在不同真菌物种之间移动的。我们的工作为这个谜团提供了一个答案,那就是巨大的转座因子能够携带不同种类真菌之间的基因。这个答案主要通过我们在真菌 Paecilomyces variotii 的基因组中发现一种名为 Hephaestus 的巨大转座因子来阐明。赫菲斯托斯携带大量抗金属离子的基因,并且能够在不同种类的真菌之间转移。这项研究为真菌如何快速进化出新特性提供了见解。
量子力学是20世纪最大的成就之一,从根本上改变了我们对物理宇宙的思考方式。但是,它也是最神秘的科学理论之一。在这个谜团的核心是所谓的量子。对量子状态的叠加的测量表明,在两个远距离分离的量子系统之间可以存在强大的非经典相关性,从而导致所谓的量子“距离处的怪异动作” 1。这代表了量子力学最引人注目的量子之一,并且是最基本的量子力学资源,在许多量子计算和Quantum Information应用中发挥了重要作用。纠缠曾经在量子上下文中严格讨论。其关键特性之一是非局部性,这意味着一个量子系统的测量似乎会影响一个纠缠量子系统的状态,即一定的距离,看似与特殊的相对性相矛盾。贝尔的措施2对此相关性进行了测试,以拒绝爱因斯坦 - 波多尔斯基 - 罗森(EPR)Paradox 3中所述的局部“隐藏变量”。量子纠缠是量子库和量子信息的基础。然而,这些量子的实现和应用中的缺点包括由于环境而导致的信号水平较低和敏感性降解,因此要求“单击”检测重合“点击”检测。最近,有很大的兴趣使用经典的光场构建纠缠状态,以期保留
人类基因组中蕴藏着许多最小但最重要的秘密。最近的进展加速了我们解开这些谜团的能力,并发现了基因组如何导致人类特征的共同和独特变化,包括那些对生存至关重要的特征。人类物种中一些最引人注目的适应性例子发生在过去几千年迁徙到西藏、安第斯山脉和埃塞俄比亚高原的人群中。几个世纪前,生理学家首次注意到高地人群的不同特征,推测特定特征对高海拔地区氧气供应减少导致的环境缺氧带来的挑战有益或有害 ( West, 1998 )。鉴于许多高地人群已经在这样的环境中生存了数百代,人们推测遗传因素为这些群体提供了适应性优势。在过去十年中,通过全基因组扫描寻找突出基因组内异常模式的适应性特征,深入了解人类物种的进化历史变得越来越可行 ( Simonson, 2015 )。虽然许多对高原藏族、安第斯山脉和埃塞俄比亚人群的原始研究都是基于对分散在整个基因组中的单核苷酸变化进行“标记”的分析,但全基因组测序 (WGS) 工具提供了培养多个大规模基因组数据集的机会,这些数据集为跨人群比较提供了更高的分辨率。进一步的技术和分子
摘要1987年的诺贝尔物理学奖庆祝了发现超导铜氧化物(陶瓷),其过渡温度高于30开尔文系列。1987年标志着“高t c”超导性的开始,这是一个多元化的铜氧化物家族,它以“固有”的高t c超导性发现而无需外部压力,应变或野外调节。在接下来的几十年中,研究了一类广泛的基于氧化物的分层超导体,包括但不限于ti-,bi-,ru-,co-基于NI-基于NI的氧化物。然而,在没有铜的其他氧化物中,从未在另一种氧化物中观察到“内在”高t c超导性。因此,铜在电子配对机制中的不可思议的唯一性在凝结物理学上是一个长期存在的谜团。“高t c非常规超导性是铜的特有的吗?”在这里,我建议并证明(1)超导性在元素元素表中很常见; (2)一个模型,以增加一般分层系统中超导性(T C)的能量尺度。因此,逻辑含义是“高t c超导性无处不在”。按照这个命题,我们在分层的氧化镍中进行了第一次演示,观察到高t c超导性无需外部调制。查询:3943 6303