(1) 该项目被日本科学技术振兴机构选为促进创新中心建设的项目,该项目为期五年(从 2015 年 6 月 1 日到 2020 年 3 月 31 日)。本文讨论的研究是基于该项目的合作成果。 (2) 当两种或两种以上气体的混合物通过专门的流路(由缠绕在卷轴上的空心管组成,称为柱)时,混合物的各种成分会随着时间自然分离。气相色谱仪是一种利用这种时间分离现象来识别和测量气体混合物成分浓度的分析仪器。传统的气相色谱仪是大型仪器,通常安装在桌面上;虽然已经开发了便携式版本,但它们的灵敏度和精度通常不如大型仪器。
摘要:本文研制了一种手掌大小的激光光谱仪,该光谱仪基于可调谐二极管激光吸收光谱 (TDLAS) 和新型双层环形电池,用于检测痕量气体。得益于自制电子系统和紧凑光学设计,传感器的物理尺寸最小化为 24×15×16 cm 3 。环形吸收电池分为 2 层,共有 84 个反射,有效光程长度为 8.35 m,用于增强气体的吸收信号。设计了自制电子系统,用于实现分布式反馈 (DFB) 二极管激光控制器、模拟锁相放大器、数据采集和通信。采用免校准扫描波长调制光谱法来确定气体浓度,并减少电子噪声和机械振动引起的随机波动。使用 1.653 μm 的 DFB 激光器演示了对环境空气中 CH 4 的测量。混合气体更新的上升时间和下降时间分别约为16 s和14 s。为验证光谱仪的性能,进行了振动和温度试验,在不同振动频率和温度下对20 ppm CH 4 测定的标准偏差分别为0.38 ppm和0.11 ppm。根据Allan偏差分析,在积分时间为57.8 s时,CH 4 的最低检测限可达22 ppb。
由于特性的独特组合,包括高硬度,低密度,化学和热稳定性,半导体和高中子吸收,硼碳化物(B 4 C)是涉及极端环境的各种应用的潜在候选者。但是,B 4 C的当前应用由于其低断裂韧性而受到限制。在这项研究中,通过同时利用包括裂纹偏转,桥梁和微裂缝韧性在内的多种韧性机制,使用了具有包括Tib 2晶粒和石墨血小板在内的特征的分层微观结构设计。使用现场辅助烧结技术(快速),制造了具有密度和分层微结构的B 4 C复合材料。以前,使用微缩进在微尺度上测量了制造的B 4 C复合材料的断裂韧性,以提高56%。在这项工作中,B 4 C复合材料的断裂韧性在宏观尺度上是使用四点弯曲方法来表征的,并将其与在微尺度上获得的先前结果进行了比较。还进行了B 4 C-TIB 2复合材料的断裂行为的微力学模型,以评估实验观察到的坚韧机制的贡献。在四点弯曲测试中,B 4 C复合材料与TIB 2粒(约15粒体积)和石墨血小板(〜8.7 vol%)增强的B 4 C复合材料均表现出最高的断裂韧性从2.38到3.65 MPA∙MPA∙MPA∙M1/2。测量值低于使用微缩号获得但保持一般趋势的值。压痕和四点弯曲测试结果之间的差异源自凹痕测试期间高接触载荷触发的复杂变形行为。通过微力学建模,由于B 4 C和TIB 2之间的热膨胀不匹配引起的热残留应力,并且B 4 C-TIB 2边界处的弱相互作用被确定为实验观察到的韧性增强的主要原因。这些结果证明了B 4 C韧性的层次微结构设计的有效性,并可以为B 4 C复合材料的未来设计提供具有优化的微结构的未来设计,以进一步增强断裂韧性。
摘要:拉曼光谱法已成为一种流行的分析工具,因为它能够进行非破坏性探测并提供材料的指纹信息。拉曼光谱领域的进步和应用范围的扩大保证了在正规教育课程中引入该主题。在教育课程中引入拉曼光谱分析有助于学生学习光谱基础知识。此外,组件熟悉和制造培训将帮助学生发展自己的方法来制造和定制用于特定应用的仪器。虽然许多拉曼光谱仪都可以在市场上买到,但高昂的成本使大多数学术机构都买不起。在此,我们描述了一种简单且经济有效的方法来制作一个完全集成的便携式拉曼光谱仪,并解释了一些可以在课堂上使用制造的设备进行的简单实验。关键词:研究生教育/研究、分析化学、演示、物理化学、实验室设备/仪器、定性分析、定量分析、拉曼光谱、光谱学■ 简介
仅供研究使用。不可用于诊断程序。© 2021 Thermo Fisher Scientific Inc. 保留所有权利。Intel 是 Intel Corporation 的注册商标。Microsoft 和 Windows 是 Microsoft Corporation 的注册商标。所有其他商标均为 Thermo Fisher Scientific 及其子公司的财产。此信息作为 Thermo Fisher Scientific Inc. 产品功能的示例提供。它不旨在鼓励以任何可能侵犯他人知识产权的方式使用这些产品。规格、条款和定价可能会发生变化。并非所有产品在所有国家/地区都有售。请咨询您当地的销售代表了解详情。PS65965-EN 0521M
摘要。原始调查光谱仪(OSS)是用于起源的多功能远射光谱仪。在光子背景极限下运行,使用六个对数间隔的光栅模块,以300的分辨能力(R)瞬间覆盖25至588-μm波长范围。每个模块同时至少30与最多100个空间束,从而实现了真实的[三维(3D)]光谱映射。此外,OSS提供了两种高分辨率模式。第一个将长路径傅立叶转换光谱仪(FTS)插入到传入光的一部分中,以提前光栅后端,使R高达43; 000×½λ∕112μm,同时保留了基于光栅的线的灵敏度。第二次与FTS串联扫描Etalon,为100至200-μm的范围提供高达300,000的R。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.1.011017]
Benjamen P. Reed* 1 , David J. H. Cant 1 , Steve J. Spencer 1 , Abraham Jorge Carmona-Carmona 2 , Adam Bushell 3 , Alberto Herrera-Gómez 2 , Akira Kurokawa 4 , Andreas Thissen 5 , Andrew G. Thomas 6 , Andrew J. Britton 7 , Andrzej Bernasik 8 , Anne Fuchs 9 , Arthur P. Baddorf 10 , Bernd Bock 11 , Bill Theilacker 12 , Bin Cheng 13 , David G. Castner 14 , David J. Morgan 15 , David Valley 16 , Elizabeth A. Willneff 17 , Emily F. Smith 18 , Emmanuel Nolot 19 , Fangyan Xie 20 , Gilad Zorn 21 , Graham C. Smith 22 , Hideyuki Yasufuku 23 , Jeffery Fenton 24 , Jian Chen 20 , Jonathan D. P. Counsell 25 , Jörg Radnik 26 , Karen J. Gaskell 27 , Kateryna Artyushkova 16 , Li Yang 28 , Lulu Zhang 4 , Makiho Eguchi 29 , Marc Walker 30 , Mariusz Hajdyła 8 , Mateusz M. Marzec 8 , Matthew R. Linford 31 , Naoyoshi Kubota 29 , Orlando Cortazar- Martínez2,Paul Dietrich 5,Riki Satoh 29,Sven L. M. Schroeder 7,Tahereh G. Avval 31,Takaharu Nagatomi 32,Vincent Fernandez 33,Wayne Lake 34,Wayne Lake 34,Yasushi Azuma 4,Yasushi Azuma 4,Yusuke Yusuke Yoshikawa 355,36,and Alexander G./alexander G.
DLS 和 SLS 技术都基于仅检测到单次散射光的假设。然而,随着粒子浓度的增加,多次散射会增加并逐渐主导信号。这在 DLS 和 SLS 中都会引入无法检测的系统误差。无论重复测量多长时间或多少次,都无法消除或检测到此错误。为了解决这个问题,LS Instruments 开发了可选的 3D 互相关模块,可有效抑制多次散射。3D 互相关技术使用两束激光同时进行两次散射实验。虽然来自单次散射的贡献相同,但两次实验中的多次散射贡献不同。通过对信号进行互相关,可以抑制多次散射。3D LS 光谱仪是唯一为 DLS 和 SLS 提供 3D 互相关的仪器,为许多优秀的出版物提供了独特的数据。
摘要。我们报告了在基于超导微谐振器的定制高灵敏度光谱仪中在毫开尔文温度下进行的电子自旋回波包络调制 (ESEEM) 测量。谐振器的高品质因数和小模式体积(低至 0.2pL)允许探测少量自旋,低至 5 · 10 2 。我们在两个系统上测量了 2 脉冲 15 ESEEM:铒离子与天然丰度 CaWO 4 晶体中的 183 W 核耦合,铋供体与 28 Si 同位素富集的硅基板中的残留 29 Si 核耦合。我们还测量了硅中铋供体的 3 脉冲和 5 脉冲 ESEEM。对于近端核的超精细耦合强度和核自旋浓度都获得了定量一致性。