摘要:人类接触DNA烷基化剂的特征很差,部分原因是仅量化了有限的特定烷基DNA加合物范围。人类DNA修复蛋白,O 6-甲基鸟氨酸O 6-甲基转移酶(MGMT),不可逆地将烷基从DNA O 6-烷基鸟氨酸(O 6-烷基)转移到受体半胱氨酸上,从(ASP)。重组MGMT与含有不同O 6-烷基,替莫唑胺 - 甲基化小牛胸腺DNA(ME -CT -DNA)或已知O 6-甲基G(O 6- meg)水平的人类结肠直肠DNA或人结直肠DNA的寡脱氧核苷酸(ODN)孵育。用胰蛋白酶消化,并通过基质辅助激光解吸/飞行飞行时间质谱检测和定量ASP。ASP含有S-甲基,S-乙基,S-丙基,S-羟基乙基,S-羧甲基,S-苯甲酰苯基和S-吡啶糖丁基半胱氨酸基团,通过将MGMT与含有相应的O 6-烷基的OD孵育来检测到MGMT。在MGMT与ME-CT-DNA孵育后检测到的含有S-甲基半胱氨酸的ASP的LOQ <0.05 pmol O 6 -meg每mg CT-DNA。将MGMT与人类结直肠DNA孵育,该ASP产生的ASP含有S-甲基半胱氨酸的水平,与先前由HPLC -RadioMumunoAseay确定的O 6 -MEG相关的水平(r 2 = 0.74; P = 0.014)。o 6 -CMG,一种推定的O 6-羟基乙基加合物和其他潜在的未鉴定MGMT底物。4最近在结直肠癌中描述了类似的突变签名,这意味着AA暴露为这种新颖的方法是对人DNA中O 6 -ALKG的鉴定和定量的方法,揭示了人类DNA烷基加合物的存在,尚待充分表征。该方法建立了一个表征人DNA O 6 -Alkg加合体的平台,并且鉴于O 6 -Alkgs的诱变潜力可以提供有关癌症发病机理的机械信息。■简介烷基化剂(AAS)是已知的人类诱变剂和致癌物,其作用在很大程度上是由DNA中烷基加合物形成的介导的。1 - 3在用化学治疗甲基化剂Temozolomide治疗后,在恶性黑色素瘤和胶质母细胞瘤多种形式的患者中观察到的突变景观,替莫唑胺,主要由DNA中O 6-甲基鸟嘌呤(O 6-meg)产生的G -A转变。
靶向程序性死亡-1(PD-1)的免疫检查点抑制剂(ICI)的抽象背景处理可以产生持久的抗肿瘤反应,但并非所有患者都对ICIS做出反应。当前可以从抗PD-1治疗中受益的患者的当前方法不足。血浆衍生的无细胞DNA(CFDNA)的5-羟基甲基化(5HMC)分析提出了一种鉴定治疗反应生物标志物的新型非侵入性方法,可以应对与肿瘤活检(如肿瘤异质性和序列样品收集)相关的挑战。方法在治疗开始之前,在治疗期间从多个时间点收集了31例非小细胞肺癌(NSCLC)患者的血液样本。血液样品以获得血浆来源的CFDNA,然后通过两步化学通过生物素化来富集5HMC-含有CfDNA片段,并与链霉亲蛋白涂层的珠结合。5HMC增强的CFDNA和整个基因组库是并行制备的,并测序分别获得整个羟基甲基甲基和整个基因组血浆谱。的结果比较了相同患者的治疗时间点与匹配的预处理样品的结果比较表明,抗PD-1治疗诱导了反应患者的血浆CFDNA 5HMC概况的明显变化,相对于非响应者,固体瘤的反应评估标准判断。在响应者中,5HMC积累了参与免疫激活的基因,例如Inteferon(IFN) - γ和IFN-α反应,炎症反应和肿瘤坏死因子(TNF) - α信号传导,而在非反应者中,5HMC在5HMC中的5HMC对膜层面上的质量增加了5HMC。分子对抗PD-1处理的反应,如第一个治疗周期,从初期观察到血浆CFDNA谱的5HMC变化。对预处理血浆样品的比较表明,抗PD-1治疗反应和耐药性相关基因可以通过5HMC的血浆衍生CFDNA分析来捕获。此外,预处理血浆样品的5HMC分析能够使用T细胞发炎的基因表达谱区将反应者与非反应者区分开,该基因表达谱是先前通过组织RNA分析鉴定的。
摘要 — 细菌鉴定、抗生素耐药性预测和菌株分型是临床微生物学中的关键任务,对于指导患者治疗和控制传染病的传播至关重要。虽然机器学习 (ML) 和深度学习 (DL) 在增强 MALDI-TOF 质谱应用方面显示出巨大的前景,但仍然缺乏从技术角度进行的全面审查。为了弥补这一差距,我们系统地回顾了 2004 年至 2024 年期间发表的 93 项研究,重点关注关键的 ML/DL 方面,例如数据大小和平衡、预处理流程、峰值选择方法、算法、评估技术以及开源数据和代码的可用性。我们的分析强调了随机森林和支持向量机等经典 ML 模型的主要用途,以及人们对使用 DL 方法处理复杂高维数据的兴趣。尽管取得了重大进展,但预处理工作流程不一致、依赖黑盒模型、外部验证有限以及开源资源不足等挑战仍然存在,阻碍了透明度、可重复性和更广泛的采用。通过解决这些关键差距,本综述提供了可行的见解,以弥合微生物学和技术视角之间的鸿沟,为诊断微生物学中更强大、可扩展和可解释的解决方案铺平了道路。
1 EORTC总部,布鲁塞尔,比利时2肉瘤单位,曼海姆大学医学中心,海德堡大学,海德堡大学,德国曼尼海姆市,德国曼海姆3号荷兰癌症研究所Van Leeuwenhoek,范·李温霍克(Van Leeuwenhoek),阿姆斯特丹,阿姆斯特丹,荷兰,荷兰4号,荷兰4号医学中心医学中心,纽约州纽约市医学中心5 (Kitz),德国癌症联盟(DKTK),德国癌症研究中心(DKFZ)(DKFZ)和小儿血液学和肿瘤学系,海德堡大学海德堡医院,德国海德堡6助协助Publique publique-hôpitauxde parisology,La piti frandertria franivertria franiver,Neuare frander,Neuroptriagtre,西班牙巴塞罗那的Sant Joan de Deu医院8组织病理学系,克里斯蒂NHS基金会信托基金会,曼彻斯特,英国曼彻斯特9号,曼彻斯特9号肿瘤学部,医学系,维也纳医科大学,奥地利维也纳医科大学,奥地利,奥地利第10译本医学肿瘤学系,肿瘤学系,肿瘤学部,国家癌症疾病(NCT)Heidelberg,德国癌症研究中心(NCT),癌症癌症部(NCT),德国癌症部(NCT),癌症。曼彻斯特学术健康科学中心科学,英国曼彻斯特曼彻斯特大学
激光能量的作用下,基质的性质(包括其化学性质、电导率和微图案)会影响样品的电离效率,从而影响测量灵敏度。[8–11] 例如,微米级孔可用于分离不同成分的样品,以便分别进行分析。[12–14] 孔阵列还兼容主动 [15,16] 或被动上样技术,[12,17] 以简化分析样品的制备。然而,MALDI-MS 要求在分析前将样品干燥。当液滴在平面上干燥时,由于咖啡环效应,它们往往会将分析物分布在周边。[18,19] 圆柱形孔中也会发生类似的过程,导致沿周边出现沉淀 [20,21],因为激光被孔壁遮挡,信号受到抑制。这两种情况下的结果是灵敏度降低,测量变异性增加,这是由于样品点的不均匀性造成的。 [18,22]
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2021 年 4 月 16 日发布。;https://doi.org/10.1101/2021.04.15.21255388 doi:medRxiv 预印本
标题 可控凹度微碗可用于精确微尺度质谱分析 Linfeng Xu、Xiangpeng Li、Wenzong Li、Kai-chun Chang、Hyunjun Yang、Nannan Tao、Pengfei Zhang、Emory Payne、Cyrus Modavi、Jacqueline Humphries、Chia-Wei Lu 和 Adam R. Abate* L. Xu 博士、X. Li 博士、K. Chang 博士、C. Modavi 博士、P. Zhang 博士、AR Abate 教授 加利福尼亚大学旧金山分校生物工程和治疗科学系,美国加利福尼亚州旧金山 94158 电子邮件:adam@abatelab.org N. Tao 博士 Bruker Nano Surfaces,美国加利福尼亚州圣何塞 95134 H. Yang 博士 神经退行性疾病研究所,加利福尼亚大学威尔神经科学研究所,美国加利福尼亚州旧金山 94158 W. Li 博士、J. Humphries 博士、C. Lu、 Amyris Inc. 5885 Hollis St #100, Emeryville, CA, 94608 USA E. Payne 密歇根大学化学系,美国密歇根州安娜堡 48104 AR Abate Chan 教授 Zuckerberg Biohub,美国加利福尼亚州旧金山 94158 关键词:微碗、微孔阵列、质谱成像 摘要:图案化表面可通过分离和浓缩分析物来提高激光解吸电离质谱的灵敏度,但其制造可能具有挑战性。在这里,我们描述了一种简单的方法来制造带有微米级孔图案的基底,与平面相比,它可以产生更准确、更灵敏的质谱测量结果。这些孔还可以浓缩和定位细胞和珠子以进行基于细胞的分析。 1. 引言基质辅助激光解吸电离(MALDI)是一种软电离质谱(MS)技术,常用于蛋白质组学和代谢组学的生物学研究[1–
动机:了解 DNA 双链断裂 (DSB) 修复所涉及的因素对于开发靶向抗癌疗法至关重要,但许多基因的作用仍不清楚。最近的研究表明,某些基因的扰动可以改变 DSB 修复后留下的序列特异性突变的分布。这表明全基因组筛选可以通过识别基因来揭示新的 DSB 修复因子,这些基因的扰动会导致在给定 DSB 位点观察到的突变分布谱与野生型有显著偏差。然而,为全基因组扰动筛选设计适当的对照可能具有挑战性。我们探索了这样一种想法,即全基因组筛选可能允许我们放弃使用传统的非靶向对照,方法是将分析重新定义为异常值检测问题,假设大多数基因对 DSB 修复的影响最小。结果:我们提出了 MUSICiAn(突变特征目录分析),这是一种组合数据分析方法,通过测量所有光谱分布与集中趋势的偏差,对没有对照的基因扰动特定突变谱进行排序。我们表明 MUSICiAn 可以有效估计现有 Repair-seq 数据集的伪对照,筛选 476 个基因和 60 个非靶向对照。我们进一步将 MUSICiAn 应用于全基因组数据集,该数据集分析了 CRISPR-Cas9 在三个靶位点诱导的突变结果,这些突变发生在细胞中,每个细胞的个体扰动为 18,406 个基因。MUSICiAn 成功恢复了已知基因,突出了剪接体在 DSB 修复中不太受重视的作用,并揭示了进一步研究的候选基因。可用:github.com/joanagoncalveslab/MUSICiAn。
抽象的斑马鱼具有强大的受伤后心脏再生的能力,并且免疫系统在此过程中起着关键作用。我们先前表明,即使在受伤后的第一周内恢复了浸润性的巨噬细胞数量,也会延迟延迟通过氯膦酸盐脂质体(–1D_CL,巨噬细胞延迟模型)会损害中性粒细胞的分辨和心脏再生(Lai等人,2017年)。因此,通过比较心脏修复期间的这些晚期巨噬细胞与对照巨噬细胞的比较,学习再生巨噬细胞的证明是很有趣的。在这里,我们通过将非再生性巨噬细胞模型与再生对照进行比较,进一步研究了心脏再生的机理见解。时间RNASEQ分析表明,–1D_CL治疗导致炎症分辨率破坏,反应性氧稳态和心脏修复过程中能量代谢。对再生性与非再生性心脏的发炎细胞的比较单细胞RNASEQ分析进一步鉴定出异质的宏观斑点和中性粒细胞,显示出替代性激活和细胞串扰,导致中性粒细胞保留和慢性炎症。在巨噬细胞中,仅在再生心脏中富集了两个住宅亚群(HBAA + MAC和TIMP4.3 + Mac 3),并且在 + 1D_CL处理后几乎没有恢复。为了耗尽居民巨噬细胞而不会延迟循环巨噬细胞的招聘,我们通过在CryoInjury之前的8 d(–8d_cl)在8 d(–8d_cl)中管理CL来建立了居民巨噬细胞的模型。引人注目的是,常驻巨噬细胞缺乏斑马鱼仍然表现出血运重建,心肌细胞存活,碎屑清除和细胞外基质重塑/疤痕的缺陷,而无需从循环/单核细胞衍生的巨噬细胞中获得功能补偿。我们的结果表征了炎症细胞与识别独特的居民巨噬细胞之间的不同功能和相互作用的特征。斑马鱼心脏再生的先决条件。