1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他
简单总结:谷氨酰胺对人体功能至关重要,在癌症代谢中起着关键作用,因为它会影响肿瘤生长。然而,癌细胞复杂的适应性代谢动力学引发了人们对谷氨酰胺拮抗策略在阻止肿瘤生长方面可能存在的局限性的担忧。同样,虽然补充谷氨酰胺在支持癌症患者方面显示出希望,但需要仔细考虑以解决与正在进行的治疗可能产生的相互作用以及对无意中刺激肿瘤生长的担忧。最近的研究揭示了谷氨酰胺对癌细胞表观遗传调控和增强抗癌免疫功能的影响,为潜在的治疗进展提供了宝贵的见解。了解谷氨酰胺干预的复杂性和挑战对于优化其在癌症治疗和患者健康方面的潜在益处至关重要。
针对严重的孟德尔疾病的PolyQ疾病基因超出规范Polyq 220疾病221 PolyQ疾病基因的子集(即AR,ATN1,ATXN2,CACNA1A,CACNA1A,HTT,HTT,TBP)具有222
简介 肿瘤细胞的快速生长需要专门的代谢重编程。肿瘤代谢不仅促进生长,而且还会创造一种肿瘤微环境 (TME),通过消耗关键代谢物(如色氨酸、葡萄糖和谷氨酰胺)并产生抑制性代谢物(如犬尿氨酸)来抑制免疫效应功能。或者,抑制性免疫细胞在 TME 中茁壮成长,这些细胞在代谢上与效应细胞不同 (1-3)。TME 中最突出的免疫细胞类型之一是抑制性巨噬细胞。巨噬细胞是肿瘤的主要组成部分,参与癌症的发生、发展、血管生成、转移和创造免疫抑制环境 (4-7)。此外,肿瘤相关巨噬细胞 (TAM) 表达代谢酶,如 iNOS 或精氨酸酶 1(这两种酶都会导致精氨酸耗竭)和 IDO(一种导致色氨酸耗竭的酶),可抑制 T 细胞活化和增殖 (8–11)。TAM 还表达 PDL1 和 PDL2,它们与 PD1 在
摘要:多聚谷氨酰胺脊髓小脑共济失调 (SCA) 是由单个基因编码区胞嘧啶-腺嘌呤-鸟嘌呤重复扩增引起的六种常染色体显性共济失调的异质性群体。目前,这些疾病尚无治愈或减缓疾病的治疗方法,但它们的单基因遗传为基因治疗策略的发展提供了理论依据。事实上,RNA 干扰策略已在 SCA1、SCA3、SCA6 和 SCA7 的细胞和/或动物模型中显示出有希望的发现。此外,反义寡核苷酸疗法已在 SCA1、SCA2、SCA3 和 SCA7 模型中提供了令人鼓舞的概念证明,但它们尚未进入临床试验。相反,基因编辑策略,例如成簇的规律间隔的短回文重复序列 (CRISPR/Cas9),已被引入
如上所述,很明显药物的吸收和与分子细胞系统的相互作用是复杂的现象,并且受到特定膜转运蛋白的功能或功能障碍的强烈影响[8–10]。因此,药物-转运蛋白相互作用预计在人类治疗中发挥关键作用[11,12],或者在其他情况下,由于所谓的脱靶相互作用而引发副作用[13]。经过几十年的研究,现在人们普遍认为,在药物设计中必须考虑膜转运蛋白,以改善药物输送和疗效。在这方面,国际转运蛋白联盟[14]成立,旨在确定:(i)必须考虑哪些转运蛋白来改善药物吸收;(ii)用于测定和筛选药物-转运蛋白相互作用的合适生物技术;(iii)需要考虑脱靶效应的转运蛋白[15,16]。实验室自动化与筛选协会 (SLAS, https://www.slas.org ) 也开始考虑膜转运蛋白在药物发现中的应用 [17]。研究转运蛋白的最新方法进步引发了对膜转运蛋白和药物-转运蛋白相互作用的研究呈指数级增长 [18–20]。在这种情况下,人们对一组特殊的膜转运蛋白产生了浓厚的兴趣:谷氨酰胺转运蛋白。人们对这组蛋白质的兴趣日益浓厚的原因有很多,从基础知识的提高到谷氨酰胺转运参与细胞生命的关键过程及其在人类病理学中的作用。最后一个方面为利用这些蛋白质作为人类治疗的新靶点开辟了新的、非常有希望的前景。在这篇评论中,将总结这一迅速发展的领域的现状。
增殖的癌细胞很大程度上依赖谷氨酰胺来存活和增殖。谷氨酰胺是 TCA 循环中脂质和代谢物合成的碳源,也是氨基酸和核苷酸合成的氮源。迄今为止,许多研究已经探索了谷氨酰胺代谢在癌症中的作用,从而为以谷氨酰胺代谢为靶点的癌症治疗提供了科学依据。在这篇综述中,我们总结了谷氨酰胺代谢每个步骤所涉及的机制,从谷氨酰胺转运蛋白到氧化还原稳态,并重点介绍了可用于临床癌症治疗的领域。此外,我们还讨论了癌细胞对以谷氨酰胺代谢为靶点的药物产生耐药性的机制,以及克服这些机制的策略。最后,我们讨论了谷氨酰胺阻断对肿瘤微环境的影响,并探索了最大限度发挥谷氨酰胺阻断剂作为癌症治疗效用的策略。
摘要 代谢异常是肿瘤的重要特征,谷氨酰胺-精氨酸-脯氨酸轴是肿瘤代谢的重要节点,在氨基酸代谢中起着重要作用,同时也是其他非必需氨基酸和必需代谢物合成的支架。本文就(1)肿瘤细胞对谷氨酰胺的依赖,谷氨酰胺转运和代谢加速;(2)谷氨酰胺进入细胞外、细胞内合成及细胞内谷氨酰胺命运的调控方式;(3)谷氨酰胺、脯氨酸和精氨酸代谢途径及其相互作用;(4)针对谷氨酰胺-精氨酸-脯氨酸代谢系统的肿瘤治疗研究进展作一综述,重点总结了针对该代谢系统关键酶之一P5CS(ALDH18A1)的治疗研究进展,为针对肿瘤代谢特点的治疗提供新的依据。
完全培养基配置 DMEM培养基;15%胎牛血清;1% GlutaMAX-1谷氨酰胺;MEM NEAA非必需氨基酸;Sodium Pyruvate丙酮
26 March 2024 286-24 Approval report – Application A1275 Transglutaminase from GM Bacillus licheniformis as a processing aid Food Standards Australia New Zealand (FSANZ) has assessed an application made by Novozymes Australia Pty Limited to amend the Australia New Zealand Food Standards Code to permit transglutaminase from genetically modified Bacillus licheniformis to be used as a processing aid在制造特定食品并准备了食品调节措施草案中。2023年10月10日,FSANZ寻求有关变化草案的提交,并发布了一份相关报告。fsanz收到了两份提交。fsanz批准了2024年3月13日的变化草案。食品部长的会议1被告知FSANZ于2024年3月26日的决定。该报告根据《 1991年澳大利亚新西兰法》第33(1)(b)款提供(《 FSANZ法》)。